quenching of central galaxies in the next generation
play

Quenching of Central Galaxies in the Next Generation Illustris - PowerPoint PPT Presentation

Quenching of Central Galaxies in the Next Generation Illustris Simulations (IllustrisTNG) Rainer Weinberger Rainer Weinberger (Heidelberg Institute for Theoretical Studies) Heidelberg Institute for Theoretical Studies (HITS) The role


  1. Quenching of Central Galaxies in the Next Generation Illustris Simulations (IllustrisTNG) Rainer Weinberger Rainer Weinberger (Heidelberg Institute for Theoretical Studies) � Heidelberg Institute for Theoretical Studies (HITS) � The role of gas in galaxy dynamics — Valetta, Malta � Volker Springel, Rüdiger Pakmor (HITS), Lars Hernquist, Jill Naiman (CfA, Harvard), � xx/10/2017 Federico Marinacci, Paul Torrey, Mark Vogelsberger (MIT), � Annalisa Pillepich (MPIA), Dylan Nelson (MPA), � Shy Genel (CCA) � Oct. 06, 2017 The Role of Gas in Galaxy Dynamics — Valletta http://www.tng-project.org movie: Mark Vogelsberger, IllustrisTNG collaboration

  2. The IllustrisTNG simulations — details • Updated model for galaxy formation physics New model for AGN feedback - • Magnetohydrodynamics • Extended scope 
 (3 different boxes)

  3. The IllustrisTNG simulations — the black hole model 10 0 thermal two-mode AGN � 10 � 1 feedback 
 M Edd 10 � 2 kinetic • low mass, high 
 M Bondi / ˙ 10 � 3 accretion rate: 
 ˙ thermal 
 10 � 4 (rather inefficient) 
 10 � 5 RW et al. (2017) 10 6 10 7 10 8 10 9 • high mass, low 
 n [cm − 3 ] T [K] M BH [M � ] 10 0 accretion rate: 
 10 9 10 − 1 10 − 2 10 8 kinetic 
 10 − 3 10 7 10 − 4 | v | [km s − 1 ] M (very efficient) 10 1 10 4 10 3 10 2 10 0

  4. The IllustrisTNG simulations — the black hole model Yuan et al. (2015) two-mode AGN � feedback 
 • low mass, high 
 Mukherjee et al (2016) 4.00 accretion rate: 
 8.00 5 Time: 1.65 Myr thermal 
 7.33 4 (rather inefficient) 
 6.67 Log[T (K)] Z (kpc) 3 6.00 RW et al. (2017) • high mass, low 
 2 5.33 n [cm − 3 ] T [K] 10 0 accretion rate: 
 10 9 10 − 1 4.67 1 10 − 2 10 8 kinetic 
 10 − 3 4.00 10 7 -2 -1 0 1 2 10 − 4 | v | [km s − 1 ] M (very efficient) X (kpc) 10 1 10 4 10 3 10 2 10 0

  5. Observed and simulated signatures of quiescence 4.0 1.0 SDSS z<0.1 3.5 TNG100-1 0.8 • Use galaxy colors (g-r) color [ mag ] (u-i) color [ mag ] 3.0 0.6 2.5 proxy of star formation 2.0 0.4 rate 1.5 0.2 1.0 • Comparison to SDSS 0.5 0.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 M ⋆ [ log M sun ] M ⋆ [ log M sun ] Nelson et al. (2017) 0.6 3.5 1.0 fid no kin. • Kinetic AGN feedback 0.9 0.5 3.0 0.8 is necessary to get a (u-r) color [ mag ] (r-i) color [ mag ] 0.4 2.5 0.7 color bimodality 0.6 B - V 0.3 2.0 0.5 0.2 0.4 1.5 0.3 0.1 1.0 0.2 0.0 0.1 0.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 10 9 10 10 10 11 10 12 RW et al. (2017) M ⋆ [ log M sun ] M ⋆ [ log M sun ] M ? [M � ]

  6. AGN feedback in massive galaxies -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ])

  7. AGN feedback in massive galaxies - quenching -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) 0.8 30 25 0.6 20 0.4 15 10 0.2 5 0.0 0 0 2 4 6 8 10 12 lookback time of quenching [Gyr]

  8. AGN feedback in massive galaxies - quenching 10 0 -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 50% -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 CDF 10 − 1 -11 -12 -13 -14 not cooling 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) important loss RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) 0.8 30 25 0.6 20 thermal 10 − 2 0.4 15 10 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 0.2 5 0.0 0 energy injection during quenching [erg s − 1 ] 0 2 4 6 8 10 12 lookback time of quenching [Gyr]

  9. AGN feedback in massive galaxies - quenching 10 0 -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 CDF 10 − 1 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) 0.8 30 thermal 25 0.6 20 kinetic 10 − 2 0.4 15 10 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 0.2 5 0.0 0 energy injection during quenching [erg s − 1 ] 0 2 4 6 8 10 12 lookback time of quenching [Gyr]

  10. AGN feedback in massive galaxies - quenching 10 0 -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 CDF 10 − 1 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) 0.8 30 thermal 25 0.6 20 kinetic 10 − 2 0.4 15 10 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 0.2 5 0.0 0 energy injection during quenching [erg s − 1 ] 0 2 4 6 8 10 12 lookback time of quenching [Gyr] kinetic feedback quenches galaxies

  11. AGN feedback in massive galaxies - quiescence 10 0 -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 CDF 10 − 1 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) thermal 0.8 30 kinetic 25 0.6 20 quiescent 10 − 2 0.4 15 10 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 0.2 5 0.0 0 energy injection during quenching [erg s − 1 ] 0 2 4 6 8 10 12 lookback time of quenching [Gyr] kinetic feedback keeps galaxies quiescent

  12. AGN feedback in massive galaxies - star forming 10 0 -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 CDF 10 − 1 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) thermal 0.8 30 kinetic 25 0.6 20 star forming 10 − 2 0.4 15 10 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 0.2 5 0.0 0 energy injection during quenching [erg s − 1 ] 0 2 4 6 8 10 12 lookback time of quenching [Gyr] thermal feedback in star forming galaxies

  13. AGN feedback in massive galaxies 10 0 -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 CDF 10 − 1 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 thermal 35 fraction ( > t ) kinetic 0.8 30 quiescent 25 0.6 20 star forming 10 − 2 0.4 15 10 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 0.2 5 0.0 0 energy injection during quenching [erg s − 1 ] 0 2 4 6 8 10 12 lookback time of quenching [Gyr]

  14. What does this mean for galaxies? • Need low accretion rates to trigger quenching � ‣ Gas fueling an AGN does not help to quench a galaxy

  15. Major mergers and quenching of galaxies Di Matteo et al. (2005) F IG . 1.— An schematic outline of the phases of growth in a “typical” galaxy undergoing a gas-rich major merger. Image Credit: (a) NOAO/AURA/NSF; (b) REU program/NOAO/AURA/NSF; (c) NASA/STScI/ACS Science Team; (d) Optical (left): NASA/STScI/R. P. van der Marel & J. Gerssen; X-ray (right): NASA/CXC/MPE/S. Komossa et al.; (e) Left: J. Bahcall/M. Disney/NASA; Right: Gem- Redshift ini Observatory/NSF/University of Hawaii Institute for Astronomy; (f) J. Bahcall/M. Disney/NASA; (g) F. Schweizer (CIW/DTM); (h) NOAO/AURA/NSF. 6 4 3 2.5 Hopkins et al. (2008) Main sequence 10 -8 BH+SNe, sSFR/yr -1 Enhanced merger 10 -9 10 -10 BH accretion switched off 10 -11 Pontzen et al. (2017) 1.0 1.5 2.0 2.5 3.0 t/Gyr

  16. Do major gas rich mergers quench galaxies? -7 z=4 z=2 -8 -9 log 10 (specific star formation rate [yr � 1 ]) -10 -11 -12 -13 -14 -7 z=1 z=0 -8 -9 -10 -11 -12 -13 -14 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 40 35 fraction ( > t ) 0.8 30 25 0.6 20 0.4 15 10 0.2 5 0.0 0 0 2 4 6 8 10 12 lookback time of quenching [Gyr]

  17. Do major gas rich mergers quench galaxies? -7 9 z=4 z=2 -8 1.0 -9 8 [10 − 5 Mpc − 3 Gyr − 1 ] log 10 (specific star formation rate [yr � 1 ]) -10 7 -11 fraction ( > t ) 0.8 -12 6 -13 -14 5 0.6 -7 z=1 z=0 4 -8 -9 0.4 3 -10 -11 2 0.2 -12 -13 1 -14 0.0 0 9.5 10.5 11.5 9.5 10.5 11.5 log 10 (stellar mass [M � ]) RW et al. (in prep.) -2 0 2 4 6 8 10 12 45 rate [10 − 6 Mpc − 3 Gyr − 1 ] 1.0 time between merger and quenching [Gyr] 40 35 fraction ( > t ) 0.8 30 25 0.6 20 most of the quenching events are not � 0.4 15 10 triggered by galaxy major mergers 0.2 5 0.0 0 0 2 4 6 8 10 12 lookback time of quenching [Gyr]

  18. Conclusions • IllustrisTNG reproduces colors of central galaxies • Quenching via kinetic feedback at (moderately) low accretion rates • Luminous AGN do not cause quenching! • Most quenching events not triggered by a 
 (gas rich) major merger

Recommend


More recommend