star formation quenching in gas rich barred galaxies
play

Star formation quenching in gas-rich barred galaxies Sergey - PowerPoint PPT Presentation

Star formation quenching in gas-rich barred galaxies Sergey Khoperskov 1 , Misha Haywood 1 , Paola Di Matteo 1 , Matt Lehnert 2 , Francoise Combes 3 1 GEPI, Observatoire de Paris, Meudon, France 2 IAP, Paris, France 3 LERMA, Observatoire de Paris,


  1. Star formation quenching in gas-rich barred galaxies Sergey Khoperskov 1 , Misha Haywood 1 , Paola Di Matteo 1 , Matt Lehnert 2 , Francoise Combes 3 1 GEPI, Observatoire de Paris, Meudon, France 2 IAP, Paris, France 3 LERMA, Observatoire de Paris, Paris, France 
 Khoperskov et al A&A accepted arXiv 1709.03604

  2. The color-magnitude diagram Hogg et al. 2003

  3. The color-magnitude diagram Galaxy color bimodality Hogg et al. 2003

  4. The color-magnitude diagram Galaxy color bimodality Hogg et al. 2003 Blue cloud: star-forming, a lot of gas, spiral

  5. The color-magnitude diagram Galaxy color bimodality Hogg et al. 2003 Red sequence: non-star-forming, little gas Blue cloud: star-forming, a lot of gas, spiral

  6. Evolution of galaxies Color Magnitude

  7. Evolution of galaxies Color Secular evolution Gas consumption Magnitude

  8. Evolution of galaxies Gas accretion Color Secular evolution Gas consumption Magnitude

  9. Evolution of galaxies Gas accretion Color Quenching Secular evolution Gas consumption Magnitude

  10. Evolution of galaxies Gas accretion Color Quenching Secular evolution Gas consumption Magnitude

  11. Evolution of galaxies Gas accretion Color Quenching remove gas Secular evolution inefficient SF Gas consumption Magnitude

  12. Nearby quenching

  13. Nearby quenching

  14. Nearby quenching Thick disk formation CEM by Snaith et al 2015

  15. Milky Way: ”quenching” Haywood+ 2016 continuity in chemical evolution Rapid decrease of SFR After quenching: gas-rich disk Snaith+ 2015

  16. Nearby galaxies morphology

  17. Nearby galaxies morphology z~0: 60-70% of galaxies have a bar

  18. Nearby galaxies morphology z~0: 60-70% of galaxies have a bar N-body sims -> bar is a long-lived structure

  19. CALIFA barred galaxies MW “Quenching” González Delgado+ 2017

  20. Most of disk galaxies quenched SF in the past

  21. Most of disk galaxies quenched SF in the past A lot of galaxies are barred now

  22. Most of disk Typically bar galaxies is a long-lived quenched SF structure in the past A lot of galaxies are barred now

  23. N-body/hydro simulations Isolated disk galaxies • Gaseous disk (30 pc resolution) • Radiative heating/cooling • Star formation • Initial thick stellar disk • New born particles (0.5-4 10 6 particles) • Stellar feedback (SNe, stellar evolution STARBURST’99) • Dark matter halo (rigid or 0.5-1 10 7 particles) • Models of gas rich galaxies (initially M gas /M stars ~ 0.5-1)

  24. Unbarred galaxy. Star formation rate Gas fraction f=1

  25. Unbarred galaxy. Star formation rate Gas fraction f=1

  26. Unbarred galaxy. Star formation rate Gas fraction f=1 Different radii total

  27. Barred galaxy. Star formation rate Gas fraction f=1

  28. Barred galaxy. Star formation rate Gas fraction f=1

  29. Barred galaxy. Star formation rate Gas fraction f=1 Different radii total

  30. Star formation efficiency Different radii Unbarred galaxy Barred galaxy SFE = SFR / Gas density

  31. Gas velocity dispersion Different radii Unbarred galaxy Barred galaxy bar formation time scale

  32. Gas velocity dispersion

  33. Bar Gas velocity dispersion rotation

  34. Bar Gas velocity dispersion rotation Gas (supersonic) flow

  35. Bar Gas velocity dispersion rotation Gas (supersonic) flow

  36. Bar Gas velocity dispersion rotation Shock wave(!) Gas (supersonic) flow

  37. Bar Gas velocity dispersion rotation Shock wave(!) dust lines Gas (supersonic) flow

  38. Bar Gas velocity dispersion rotation Shock wave(!) Gas (supersonic) flow

  39. Bar Gas velocity dispersion rotation Shock wave(!) Gas (supersonic) flow

  40. Gas (partially) lose Bar Gas velocity dispersion angular momentum rotation stellar density Shock wave(!) gas LOS velocity Gas (supersonic) flow

  41. Bar Gas velocity dispersion rotation Shock Velocity wave(!) gradient Gas (supersonic) flow

  42. Bar Gas velocity dispersion rotation Shock Velocity wave(!) gradient Gas (supersonic) flow

  43. Kelvin-Helmholtz- Bar Gas velocity dispersion rotation type instability Shock Velocity wave(!) gradient High gas velocity dispersion Gas (supersonic) flow

  44. Gas density SFR SFE

  45. Kennicutt-Schmidt relation. Gas-rich galaxy Before the bar formation Whole disk Gas surface density

  46. Kennicutt-Schmidt relation. Gas-rich galaxy After the bar formation Whole disk Gas surface density

  47. Kennicutt-Schmidt relation. Gas-rich galaxy After the bar formation Whole disk Gas surface density Flattening of the KS relation in the central regions

  48. Kennicutt-Schmidt relation Gas-rich galaxy <5 kpc 5<r<10 kpc Whole disk A prediction to be checked with observations of high-redshift, or local gas-rich galaxies.

  49. Conclusions • Bar -> turbulent motions • Within the bar size gas vel. dispersion + 10 − 25 km s − 1 • SFE (in highly turbulent gas) is less efficient • Factor of 5-10 in comparison to unbarred • For 10% bar amplitude and M_gas/M_stars ~ 1.0: SFR suppressed by a factor of 10 during 1 Gyr • agreement with Milky Way star formation quenching episode more details on arXiv 1709.03604

Recommend


More recommend