quenched invariance principle for random walks and random
play

Quenched invariance principle for random walks and random divergence - PowerPoint PPT Presentation

Quenched invariance principle for random walks and random divergence forms in random media on cones Takashi Kumagai (RIMS, Kyoto University, Japan) On-going joint work with Z.Q. Chen (Seattle) and D.A. Croydon (Warwick).


  1. Quenched invariance principle for random walks and random divergence forms in random media on cones Takashi Kumagai (RIMS, Kyoto University, Japan) On-going joint work with Z.Q. Chen (Seattle) and D.A. Croydon (Warwick). http://www.kurims.kyoto-u.ac.jp/~kumagai/ 28 September 2012: Stochastic Analysis and Applications at Okayama

  2. Each bond “open” with prob. p “closed” with prob. 1-p “Open”, “closed” is indep for each bond 1 Introduction Bond percolation on Z d ( d ≥ 2) ∃ p c ∈ (0 , 1) s.t. p > p c ⇒ ∃ 1 ∞ -cluster G ( ω ) (random media!), p < p c ⇒ no ∞ -cluster

  3. SRW on supercritical percolation cluster on Z d Known results • [Quenched invariance principle (QIP)] (Sidoravicius-Sznitman ’04, Berger-Biskup ’07, Mathieu-Piatnitski. ’07) n � 1 Y ! n 2 t ! B � t P ⇤ -a.s. ! for some � > 0 p ! t ( x, y ) := P x ( Y t = y ) /µ y . • [Gaussian heat kernel bounds] (Barlow ’04) d ( x, y ) 2 d ( x, y ) 2 c 1 t ( x, y )  c 3 )  p ! t d/ 2 exp( � c 2 t d/ 2 exp( � c 4 ) , t t P ⇤ -a.s. ! for t � d ( x, y ) _ 9 U x , x, y 2 C . Rem 1. ”Annealed” invariance principle: known since 80’s Rem 2. Generalization of the QIP to random conductance model is known.

  4. Each bond “open” with prob. p “closed” with prob. 1-p “Open”, “closed” is indep for each bond Ex 1 RW on supercritical percolation cluster for L ⇢ Z d ( d � 2) (Our problem) L := { ( x 1 , · · · , x d ) 2 Z d : x j 1 , · · · , x j l � 0 } for some 1  j 1 < · · · < j l  d , l  d . 9 p c 2 (0 , 1) s.t. 9 1 1 -cluster C for p > p c , no 1 -cluster for p < p c .

  5. P ⇤ ( · ) := P p ( ·| 0 2 C ), Y ! : SRW on C ( ! ). C ( ! ): 1 -cluster, [ n 2 t ] ! B � t , P ⇤ � a.e. ! (for some � > 0)? n � 1 Y ! (Q1) (How about RW on percolation on boxes?)

  6. 0 Ex 2 Random divergence form on a cone C : Lipschitz domain in R d � 1 D := { ( t, tx 1 , · · · , tx d � 1 ) 2 R d : t > 0 , ( x 1 , · · · , x d � 1 ) 2 C } : cone c 1 I  A ! ( x )  c 2 I for all x 2 D , P -a.e. ! . ( Ω , P ): Prob. space, ! 2 Ω , A ! ( x ) , 2 R d s.t. ˜ 9 ˜ A ! ( x ) = A ! ( x ) , x 2 D , ˜ A ! ( x ) = ˜ A ⌧ x ! (0), { ⌧ x } x 2 R d : ergo. shift. R D r f ( x ) A ! ( x ) r f ( x ) dx Y ! : corresponding di ff usion. E ( f, f ) = ) " Y ! (Q2) " � 2 t ! B � t , P � a.e. ! (for some � > 0)?

  7. (Known results for the whole space) Random divergence form on R d c 1 I  A ! ( x )  c 2 I for all x 2 R d , P -a.e. ! , ( Ω , P ): Prob. space, ! 2 Ω , A ! ( x ) = A ⌧ x ! (0), { ⌧ x : x 2 R d } : ergo. shift. R R d r f ( x ) A ! ( x ) r f ( x ) dx Y ! : corresponding di ff usion. E ( f, f ) = ) • [Quenched invariance principle] (...., Osada ’83, Kozlov ’85) " Y ! " � 2 t ! B � t , P -a.s. ! for some � > 0 . • [Gaussian heat kernel bounds] d ( x, y ) 2 d ( x, y ) 2 c 1 t ( x, y )  c 3 )  p ! t d/ 2 exp( � c 2 t d/ 2 exp( � c 4 ) , (1) t t P -a.s. ! for t > 0, x, y 2 R d .

  8. Problem in extending the results to cones All the results use corrector method, which requires translation invariance of the original space. Main results : Yes! (Q1) (box case as well) and (Q2) hold. Ideas • Full use of heat kernel estimates. • Use information of QIP on the whole space and Dirichlet form methods.

  9. 2 Framework and results D ⇢ R d : Lipschitz domain Z E ( f, f ) = C | r f ( x ) | 2 dx, 8 f 2 W 1 , 2 ( D ) , 2 D W 1 , 2 ( D ) = { f 2 L 2 ( D, m ) : r f 2 L 2 ( D, m ) } , m : Lebesgue meas. X : reflected BM corresponding to ( E , W 1 , 2 ( D )) X D : process killed on exiting D (i.e. X D corresponding to ( E , W 1 , 2 0 ( D ))). { D n } n � 1 ⇢ D : D n supports a meas. m n s.t. m n ! m weakly in D .

  10. weak Theorem 2.1 { X n t } t � 0 : sym. Hunt proc. on L 2 ( D n ; m n ) , m n ! m on D . Assume that 8 { n j } subseq., 9 { n j k } sub-subseq. and 9 ( e X, e P x , x 2 D ) : m -sym. conserv. conti. Feller proc. on D starting at x s.t. n jk x j ) e (i) 8 x j ! x , P P x weakly in D ([0 , 1 ) , D ) , = X D where e X D is subprocess of e d (ii) e X D X killed upon leaving D , (iii) ( ˜ E , ˜ F ) : D-form of e X on L 2 ( D ; m ) satisfies C ⇢ ˜ ˜ F and E ( f, f )  K E ( f, f ) 8 f 2 C , where C : core for ( E , W 1 , 2 ( D )) and K � 1 . weak ) ( X n , P n x n ) ! ( X, P x ) in D ([0 , 1 ) , D ) as n ! 1 .

  11. How to verify (i)-(iii)? (i) Use heat kernel esitmates etc. (ii) From QIP of the whole space (iii) By LLN-type arguments 2.1 About (i) Assume 0 2 D n , 8 n � 1, 9 � n 2 [0 , 1] with lim n !1 � n = 0 s.t. | x � y | � � n 8 x 6 = y 2 D n . Assumption 2.2 (I) 9 c 1 , c 2 , c 3 , ↵ , � , � > 0 , N 0 2 N s.t. the following hold for all n � N 0 , x 0 2 B (0 , c 1 n 1 / 2 ) \ D n , and all � 1 / 2  r  1 . n (a) E x [ ⌧ B ( x 0 ,r ) \ D n ( X n )]  c 2 r � , 8 x 2 B ( x 0 , r/ 2) \ D n , where ⌧ A := { t � 0 : X t / 2 A } . Ellip. Harnack: 8 h n : bdd. in D n and harm. (w.r.t. X n ) in B ( x 0 , r ) , then (b) | h n ( x ) � h n ( y ) |  c 3 ( | x � y | ) � k h n k 1 for all x, y 2 B ( x 0 , r/ 2) . (2) r

  12. (II) 8 { x n 2 D n : n � 1 } and 8 x 2 D s.t. x j ! x 2 D , { P x n n } n is tight in D ( R + , D ) . R 1 d 0 e � u { 1 ^ (sup 0  t  u | X t � X t � | ) } du (III) J ( X ) := ! 0 . Proposition 2.3 Under Assumption 2.2, the following holds: 8 { n j } subseq., 9 { n j k } sub-subseq. and m -sym. di ff usion ( e X, e P x , x 2 D ) on D x j weak P x in D ([0 , 1 ) , D ) . ! e s.t. 8 x j ! x , P n jk Rem. Roughly, Gaussian-type heat kernel est. are enough to verify Assumption 2.2. (Obtain equi-H¨ older cont. for resolvents and use Ascoli-Arzela etc.: Z 1 n f ( y ) |  Cd ( x, y ) � 0 k f k 1 , where U � n f ( x ) = E x e � � t f ( X n | U � n f ( x ) � U � t ) dt. 0 For the case of random media, use Borel-Cantelli as well.)

  13. 3 Answer to (Q2) in Example 2 • Condition (ii): Whole space QIP by Osada, Kozlov ) (ii) holds. • Condition (i): By uniform ellipticity, Z Z | r f ( x ) | 2 dx, 8 f 2 W 1 , 2 ( D ) . r f ( x ) A ! ( x ) r f ( x ) dx ⇣ E ( f, f ) = (3) D D ) E " : D-form corresp. to " Y ! " � 2 · also satisfies (3). (Note: " D = D .) ) Gaussian-type HK est. (1) still holds uniformly for E " . (Due to the stability: (1) , (Vol. doubling)+ (Poincar´ e ineq.) i.e.) µ ( B ( x 0 , 2 R ) \ D )  C 1 µ ( B ( x 0 , R ) \ D ) , Z Z ( f ( x ) � f B ) 2 µ ( dx )  C 2 R 2 | r f ( x ) | 2 dx, 8 f 2 W 1 , 2 ( D ) , B ( x 0 ,R ) \ D B ( x 0 , 2 R ) \ D R 8 x 0 2 D, R > 0 where f B = B f ( x ) µ ( dx ). ) Assumption 2.2 holds. • Condition (iii): Any subsequ. limit ˜ E still satisfies (3) ) (iii) holds.

  14. 4 Answer to (Q1) in Example 1 • Condition (ii): Whole space QIP by Berger-Biskup, Mathieu-Piatnitski ) (ii) holds. • Condition (iii): LLN-type arguments as follows: Lemma 4.1 { ⌘ i } i : i.i.d. with E | ⌘ 1 | < 1 . P n P n k |  M 8 k, n , a := 9 lim n !1 1 k , 9 lim n !1 1 { a n k } n k =1 : a n k 2 R , | a n k =1 a n k =1 | a n k | . n n P n ) lim n !1 1 k =1 a n k ⌘ k = aE [ ⌘ 1 ] almost surely. n x = ( ] of bonds in C con. to x ), D n = n � 1 L , D = { ( x 1 , .., x d ) 2 R d : x j 1 , .., x j l � 0 } . Let µ ! Proposition 4.2 Let E ( n ) be D-form corresp. to n � 1 Y ! [ n 2 · ] . Z ˜ n !1 E ( n ) ( f, f ) = 2 d � l pd | r f ( x ) | 2 dx, 8 f 2 C 2 E ( f, f )  lim c ( D ) , (4) Z D X f ( x ) µ ! n d = 2 d � l pd nx lim f ( x ) dx, 8 f 2 C c ( D ) . (5) n !1 D x 2 D n

  15. 1 1 n j ˜ Proof of 1st ineq. of (4) : E ( f, f ) = sup t ( f � P t f, f ) = sup lim inf t ( f � P t f, f ) n j !1 t> 0 t> 0 1 n j n j !1 E ( n j ) ( f, f ) .  lim inf n j !1 sup t ( f � P t f, f ) = lim inf t> 0 For the 2nd ineq., suppose Supp f ⇢ B (0 , M ) \ D . Then X X E ( n ) ( f, f ) = n 2 � d ( f ( x ) � f ( y )) 2 µ nx,ny = 1 n 2 ( f ( x/n ) � f ( y/n )) 2 µ x,y , n d 2 x,y 2 D n ,x ⇠ y ( x,y ) 2 H n,f where H n,f := { ( x, y ) : x, y 2 L \ B (0 , nM ) , x ⇠ y } . Note ] M n,f ⇠ 2 d � l d ( nM ) d . ( x,y ) := n 2 ( f ( x/n ) � f ( y/n )) 2 2 [0 , 9 M 0 ] and ⌘ ( x,y ) := µ x,y . By IP of SRW, Let a n Z X n !1 (2 d � l d ( Mn ) d ) � 1 a n ( x,y ) = M � d | r f ( x ) | 2 dx. lim D ( x,y ) 2 H n,f

  16. So by Lemma 4.1, Z X n !1 n � d a n ( x,y ) ⌘ ( x,y ) = 2 d � l dp | r f ( x ) | 2 dx. lim D ( x,y ) 2 H n,f X X f ( x ) µ nx n d = n � d Proof of (5): f ( x/n ) µ x,y , x 2 D n ( x,y ) 2 H n,f Z X n !1 n � d f ( x/n ) ± = 2 d � l d lim f ( x ) ± dx. D ( x,y ) 2 H n,f So by Lemma 4.1, we obtain (5). ⇤

  17. • Condition (i): Strategy (Percolation est.) ) (HK estimates) ) Assumption 2.2 Lemma 4.3 (Percolation est.) 9 c 1 , c 2 , c 3 > 0 s.t. 8 x, y 2 L , P ( x, y 2 C and d ( x, y )  c 1 | x � y | )  c 2 e � c 3 | x � y | , � � x, y 2 C and d ( x, y ) � c � 1  c 2 e � c 3 | x � y | , 1 | x � y | P where | · � · | is the Euclidean dist. and d ( · , · ) is the graph dist. Rem. Z d case by Antal-Pisztora and we exteded to the case of L . NB: This is the only place where we need the restriction to half/square spaces.

Recommend


More recommend