almost sure optimal hedging strategy
play

Almost sure optimal hedging strategy - PowerPoint PPT Presentation

Almost sure optimal hedging strategy Almost sure optimal hedging strategy emmanuel.gobet@polytechnique.edu Centre de Mathmatiques Appliques, Ecole Polytechnique and CNRS With the support of Joint work with N. Landon. E. Gobet Confrence


  1. Almost sure optimal hedging strategy Almost sure optimal hedging strategy emmanuel.gobet@polytechnique.edu Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS With the support of Joint work with N. Landon. E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 1/15

  2. Almost sure optimal hedging strategy Problem: Hedging errors due to discrete rebalancing • Payoff: g ( S T ) with d -dimensional Itô diffusion ( S t ) t ≥ 0 • Price function: u ( t, x ) = E ( g ( S T ) | S t = x ) (zero interest-rate) � t • Price process: V t = u ( t , S t ) = u ( 0 , S 0 ) + 0 D x u ( θ, S θ ) · d S θ . • Rebalancing strategy along time grid: π = { 0 = t 0 < ... < t i < ... < t N = T } • Hedging portfolio based on π : � t V N t = u ( 0 , S 0 ) + D x u ϕ ( θ ) · d S θ , 0 where ϕ ( t ) = max { t j ∈ π : t j ≤ t } . � t • Hedging error: Z N t = V t − V N � � t = D x u θ − D x u ϕ ( θ ) · d S θ . 0 Purpose: compute the optimal grids π minimizing a.s. N � Z N . � T as N → ∞ , over the set of deterministic and stopping times strategies π . E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 2/15

  3. Almost sure optimal hedging strategy 1. Literature background 1. Literature background � t Z N � � π = { 0 = t 0 < ... < t i < ... < t N = T } , = D x u θ − D x u ϕ ( θ ) · d S θ . t 0 √ NZ N • Weak convergence: T weakly converges to a Gaussian mixture – when π is deterministic [Bertsimas, Kogan, Lo ’01; Hayashi, Mykland ’05] (under rather weak assumptions) – when π consists of stopping times [Fukasawa ’11] (under conditions easy to check in dim 1, and hardly tractable in higher dimension) T ) 2 = E � Z N � T (under the RN measure) E ( Z N • L 2 norm: – for uniform grids: E � Z N � T ∼ CN − α where α ∈ (0 , 1] is the fractional regularity index of g ( S T ) ; [Zhang’ 99, G’-Temam ’ 01, Geiss-Geiss ’ 04, Geiss-Hujo’ 07, G’-Makhlouf ’10] – appropriate deterministic non uniform grids give E � Z N � T ∼ CN − 1 ; – best n -stopping times [Martini-Patry ’99] (optimal multi-stopping pb); – Asymptotic minimization over stopping times: lim inf E ( N ) E � Z N � T . Convex payoff in dimension 1, mainly within BS model [Fukasawa 10] . E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 3/15

  4. Almost sure optimal hedging strategy 2. Lower bounds and minimizing stopping times 2. Lower bounds and minimizing stopping times Purpose: 1. Compute the a.s. n →∞ N n T � Z n � T lim inf over the set of admissible sequence of strategies. The meaning of n → ∞ is given later. 2. Provide a minimizing sequence. Assumptions • Model of d risky assets: � t � t S t = S 0 + b s d s + σ s d B s . 0 0 W.l.o.g. b ≡ 0 . To simplify σ t = σ ( t, S t ) with σ ( . ) Lipschitz. • Pathwise ellipticity: 0 < λ min ( σ t σ ∗ t ) , ∀ 0 ≤ t ≤ T . E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 4/15

  5. Almost sure optimal hedging strategy 2. Lower bounds and minimizing stopping times About the assumption on Greeks First Greeks are a.s. finite in a small tube around the ( t, S t ) : ! ˛ ˛ ˛ ˛ ˛ ˛ ˛ + ˛ + ˛ D 2 ˛ D 2 ˛ D 3 ( ⋆ ) δ → 0 sup lim sup ( xx u ( t , x ) tx u ( t , x ) xxx u ( t , x ) ˛ ) < + ∞ = 1 . P 0 ≤ t < T | x − S t |≤ δ Much weaker than L p integrability assumption. • In the BS model in dimension 1, for Gamma of the Call 0.18 Call option g ( S ) = ( S − K ) + : OK 0.16 0.14 0.12 0.1 0.08 because the strike K is negligible for 0.06 0.04 0.02 0 the law of S T . 0.3 115 0.25 110 0.2 105 100 0.15 95 0.1 • Digital payoff g ( S ) = 1 S ≥ K : OK 90 0.05 85 80 0 • General diffusion with smooth coefficients: – g ( S ) = Φ ( S ) where Φ is smooth: OK – g ( S ) = 1 S ∈ F Φ ( S ) and F is a closed set which boundary has zero Lebesgue-measure: OK under ellipticity or hypo-ellipticity assumption. � includes all the "usual" continuous and discontinuous payoffs. • Open issue : find a payoff g violating the ( ⋆ ) -condition. E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 5/15

  6. Almost sure optimal hedging strategy 2. Lower bounds and minimizing stopping times Asymptotic framework • Positive deterministic real numbers ( ε n ) n ≥ 0 such that P n ≥ 0 ε 2 n < + ∞ • Strategy (indexed by n = 0 , 1 , . . . ) = sequence of stopping times T n := { τ n 0 = 0 < τ n 1 < ... < τ n i < ... ≤ τ n N n T = T } ( T may be random). N n 3 ) . A sequence of strategies ( T n ) n ≥ 0 is admissible if a.s. • Let ρ N ∈ [ 1 , 4 ` ´ ` ´ ε − 1 ε 2 ρ N N n sup sup sup | S t − S τ n i − 1 | < + ∞ , sup < + ∞ . n n T 1 ≤ i ≤ N n t ∈ ( τ n i − 1 ,τ n n ≥ 0 n ≥ 0 i ] T T ∼ Cε − 2 ρ N • Deterministic times: if ρ N > 1 , a sequence of strategy with N n n i ≤ Cε 2 ρ N T ∆ τ n deterministic times and mesh size sup 1 ≤ i ≤ N n is admissible. n • Hitting times of random "ellipsoids": the strategy given by n o τ n τ n t ≥ τ n i − 1 ) ∗ H τ n i − 1 ) > ε 2 0 := 0 , i := inf i − 1 : ( S t − S τ n i − 1 ( S t − S τ n ∧ T, n defines an admissible sequence if H is a continuous adapted positive-definite d × d -matrix process. E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 6/15

  7. Almost sure optimal hedging strategy 2. Lower bounds and minimizing stopping times n →∞ N n T � Z n � T ≥ . . . Sketch of proof of lim inf Lemma (matrix equation) Let c ∈ S d ( R ) . There is a unique solution x ( c ) ∈ S d + ( R ) to the equation 2 Tr( x ) x + 4x 2 = c 2 and c �→ x ( c ) is continuous. Heuristic proof: Z s Z s ` ´ Z n ( D 2 s = D x u t − D x u ϕ ( t ) · d S t = xx u ϕ ( t ) ∆ S t ) · d S t + Errors 0 0 Z T � Z n � T = ∆ B ∗ t σ ∗ ϕ ( t ) D 2 xx u ϕ ( t ) σ ϕ ( t ) σ ∗ ϕ ( t ) D 2 xx u ϕ ( t ) σ ϕ ( t ) ∆ B t d t + . . . 0 | {z } := c 2 ϕ ( t ) “ ” 2 X ∆ B ∗ ≈ i X τ n i − 1 ∆ B τ n + stochastic integrals +. . . (Matrix equation) τ n i τ n i − 1 <T „ « 2 X N T � Z n � T ≥ ∆ B ∗ i X τ n i − 1 ∆ B τ n + . . . (Cauchy-Schwarz ineq. and X ≥ 0 ) τ n i τ n i − 1 <T “ Z T ” 2 ≥ Tr ( X t ) d t + . . . (Convergence of quadratic variation) . 0 Most difficult part: error estimates without using L p estimates and in a.s. sense. E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 7/15

  8. Almost sure optimal hedging strategy 2. Lower bounds and minimizing stopping times Main results Theorem (lower bound) Let X be the solution of the matrix equation with c := σ ∗ D 2 xx uσ . Then, for any admissible sequence of strategies, “ Z T ” 2 n → + ∞ N n T � Z n � T ≥ lim inf Tr ( X t ) d t , a.s. . 0 Theorem (minimizing sequence) For any µ > 0 , we can exhibit an admissible sequence of strategies such that ˛ Z T ˛ ˛ ˛ ˛ N n T � Z n � T − ( Tr( X t )d t ) 2 lim sup ˛ ≤ µ C µ a.s. , ˛ ˛ n → + ∞ 0 where the random variable C µ is a.s. finite (locally uniformly in µ ). • If the Gamma matrix is positive-definite (unif. in ( t, ω ) ), we can take µ = 0 . • If λ min ( D 2 xx u t )( ω ) > 0 for any t < T , one may have C µ ( ω ) = 0 ( optimal strategy ). • The µ -optimal strategies are of the hitting time form � deterministic times are suboptimal. E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 8/15

  9. Almost sure optimal hedging strategy 2. Lower bounds and minimizing stopping times Explicit representation of the optimal strategies Let χ ( . ) ∈ C ∞ ( R ) with 1 ] −∞ , 1 / 2] ≤ χ ( . ) ≤ 1 ] −∞ , 1] . Set χ µ ( x ) = χ ( x/µ ) . • In the one dimensional case, the µ -optimal stopping times read τ n 0 := 0 and 8 9 < = ε n τ n : t ≥ τ n i = inf i − 1 : | S t − S τ n i − 1 | > ; ∧ T . √ √ q | D 2 6 + µχ µ ( | D 2 i − 1 | / i − 1 | / 6 ) xx u τ n xx u τ n Rebalancing frequency depends on the Gamma of the option. • In the general case, we have to set Λ t := ( σ − 1 ) ∗ X t σ − 1 Λ µ and t := Λ t + µχ µ ( λ min (Λ t )) I d . t t Then the µ -optimal strategy is defined by n o i − 1 ) ∗ Λ µ τ n t ≥ τ n i − 1 ) > ε 2 i = inf i − 1 : ( S t − S τ n i − 1 ( S t − S τ n ∧ T . τ n n � Hitting times of ellipsoids. E. Gobet Conférence Finance Quantitative et Statistique - Université Paris 7 - 1er mars 2012 p. 9/15

Recommend


More recommend