Two-Mode Squeezed State = + ˆ ˆ ˆ ' a a a / 2 1 1 2 = − ˆ ˆ ˆ ' a a a / 2 2 1 2 − + = + r r ( 0 ) ˆ ˆ ˆ ( 0 ) a e x i e p 1 1 1 + − = + r r ( 0 ) ( 0 ) ˆ ˆ ˆ a e x i e p 2 2 2
Two-Mode Squeezed State − + = + r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x / 2 1 1 2 − + = r + r ( 0 ) ( 0 ) ˆ ˆ ˆ ' p e p e p / 2 1 1 2 − + = − r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x / 2 1 2 2 − + r r = − ( 0 ) ( 0 ) ˆ ˆ ˆ ' p e p e p / 2 1 2 2
Two-Mode Squeezed State − + = + r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x / 2 1 1 2 + − − = − + r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x / 2 1 2 2 − + r r = + ( 0 ) ( 0 ) ˆ ˆ ˆ ' p e p e p / 2 1 1 2 − + r r + = − ( 0 ) ( 0 ) ˆ ˆ ˆ ' p e p e p / 2 1 2 2
Two-Mode Squeezed State ˆ ∝ + α + β + S 0 0 2 4 ... → 00 00 − 20 02 → 11 2
Two-Mode Squeezed State ˆ ∝ + α + β + S 0 0 2 4 ... → 00 00 − 20 02 Like (inverse) → 11 Hong-Ou-Mandel Effect! 2
Two-Mode Squeezed State 2 2 ∝ − − − + + + 2 2 r r ( , , , ) exp [ W x p x p e x x e p p 1 1 1 2 1 2 2 2 2 2 − + − − − − 2 2 r r ] e x x e p p 1 2 1 2
Gaussian States 2 ∫ iyp − ρ + = 4 ˆ e ( , ) dy x y x y W x p π 2 p = − − − − 2 2 ( , ) exp [ 2 ( ) 2 ( ) ] W x p x x p p π 0 0 x 1 − = − ξ ξ 1 T ξ ( ) exp ( / 2 ) W V π ( 2 ) det V 2nd moment covariance matrix
Gaussian States 1 − = − ξ ξ 1 T ξ ( ) exp ( / 2 ) W V π ( 2 ) det V ( ) ξ = , , , x p x p 1 1 2 2 ( ) ξ ˆ = ˆ ˆ ˆ ˆ , , , x p x p 1 1 2 2 ρ ξ ˆ ξ ˆ + ξ ˆ ξ ˆ = / ˆ Tr V 2 ij i j j i
Gaussian States ξ ˆ ξ ˆ = Λ [ ] , ( / 2 ) i k l kl 0 1 N ⊕ Λ = = , J J − 1 0 = 1 k + i Λ ≥ 0 V 4 R. Simon, PRL 84 , 2726 (2000)
Gaussian States A C = = ( 2 ) V N T C B + + ≤ + 1 det det 2 det 4 det A B C V 4 ( = 1 )
Gaussian States A C = = ( 2 ) V N T C B + − ≤ + 1 det det 2 det 4 det A B C V 4 ( = separability 1 )
Witnessing Entanglement [ ] ρ < Tr W 0 − + + < ˆ ˆ ˆ ˆ Var ( ) Var ( ) 1 x x p p 1 2 1 2 L. -M. Duan et al., PRL 84 , 2722 (2000)
Quantum Information
Classical versus Quantum Information ψ = α + β 0 1 0 or 1 Computational Basis States
Photonic Qubit α β + 0 1 Occupation-Number Qubit: α β + 10 01 Dual-Rail Qubit: e.g., polarization of a photon… α β ↔ +
Quantum Information No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Entanglement
Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Entanglement Long-Distance Universal Quantum Communication Quantum Computer
Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer
Entanglement: EPR, Schrödinger, and Bell “When two systems enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By the interaction the two systems have become en entan angled ed .” Schrödinger (1935)
Entanglement: EPR, Schrödinger, and Bell Entanglement ∫ + − c = + Ψ , / dx x x 01 10 2 Discrete Variables Continuous Variables E instein, P odolsky, and R osen (1935)... ... non-locality, non-realism, or hidden variables... QM incomplete
Entangled Photons over 144km Zeilinger
Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer
Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer … Photon Loss in Fiber Channel!
Cloning
No-Cloning ψ → ψ ψ
No-Cloning ψ ψ ψ 0
No-Cloning there is no unitary such that… ψ ψ U ψ 0
No-Cloning there is no unitary such that… U
No-Cloning U
No-Cloning ψ = 0 0 U 0 0
No-Cloning ψ = 0 0 U 0 0 U
No-Cloning ψ = 0 0 U 0 0 ψ = 1 1 U 1 0
No-Cloning ψ = 0 0 U 0 0 ψ = 1 1 U 1 0 + U ≠
No-Cloning ψ = 0 0 U 0 0 ψ = 1 1 U 1 0 ψ = 0 + 1 + 0 0 1 1 U 0 ≠ ψ ψ
No-Cloning { ( ) ( ) } + + Tr 0 0 1 1 0 0 1 1 2 = + 0 0 1 1
No-Cloning { ( ) ( ) } + + Tr 0 0 1 1 0 0 1 1 2 = + 0 0 1 1 OR
No-Cloning { ( ) ( ) } + + Tr 0 0 1 1 0 0 1 1 2 = + 0 0 1 1 OR ≠ 0 + 1
No-Cloning there is no physical operation such that… ψ ψ ψ 0 U a
No-Cloning there is no physical operation such that… ψ ψ ψ 0 U a No-Cloning Theorem ( Wootters and Zurek, Dieks, 1982 ): perfect deterministic copying device for arbitrary quantum states does not exist
No Cloning No-Cloning Theorem ( Wootters and Zurek, Dieks, 1982 ): perfect deterministic copying device for arbitrary quantum states does not exist U ψ → ψ ψ 0 ' a a ψ → ψ ψ 1 2 3 1 2 3 ψ ρ ψ = ψ ρ ψ ≠ out out Tr Tr 1 23 13 123 123
Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer
Quantum Gates
Qubits σ σ σ ≡ ≡ ≡ , , (Pauli operators) X Y Z z x y ( ) ± in particular, ± = ± ± ± ≡ / 0 1 X with 2 = = − (computational 0 0 , 1 1 Z Z basis) and, − θ / 2 i Z ≡ Z e (rotation about Z axis, etc.) θ = + = − = = 0 , 1 , , H H H X H Z H Z H X (Hadamard)
Qubits ( ) nm = − 1 C n m n m controlled sign Z { } , , , H Z C Z universal set π π / 2 / 4 Z
Quantum Computation with Qubits ( ) nm = − 1 C n m n m controlled sign Z { } universal set , , , H Z C Z π π / 2 / 4 Z Clifford set
Dual-Rail Linear-Optics Quantum Gates ˆ k 00 a 2 modes … any single-qubit gate easy with linear elements !
Multiple-Rail Linear-Optics Quantum Gates Adami, Cerf (1998) ˆ k 00 . ... 0 a d modes
Multiple-Rail Linear-Optics Quantum Gates Adami, Cerf (1998) ˆ k 00 . ... 0 a d modes = N 2 d … bad scaling of optical elements… N qubit space needs control of modes
Nonlinear Quantum Gates ˆ ˆ π ˆ = ˆ ˆ i a a b b Cross Kerr … U e ˆ ˆ ˆ ˆ → → → → U U U U - , , , 01 10 10 11 11 00 00 01 controlled sign gate C Z
Nonlinear Quantum Gates ˆ ˆ π ˆ = ˆ ˆ i a a b b Cross Kerr … U e ˆ ˆ ˆ ˆ → → → → U U U U - , , , 01 10 10 11 11 00 00 01 controlled sign gate C Z …hard to obtain for single-photon states
Nonlinear Quantum Gates π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e
Nonlinear Quantum Gates → → → 00 00 00 00 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e
Nonlinear Quantum Gates + + 10 01 10 01 → → → 10 10 2 2 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e
Nonlinear Quantum Gates − − 10 01 10 01 → → → 01 01 2 2 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e
Nonlinear Quantum Gates − − 20 02 02 20 → → → − 11 11 2 2 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e
Nonlinear Quantum Gates
Continuous Variables − ˆ ˆ 2 2 i s p i t x ≡ ≡ (WH operators) ( ) , ( ) X s e Z t e − 2 = i s p = + p p ( ) p , ( ) p X s Z t t e = 2 i t x = + ( ) , ( ) Z t x x X s x x s e (position/computational basis)
Continuous Variables − ˆ ˆ 2 2 i s p i t x ≡ ≡ (WH operators) ( ) , ( ) X s e Z t e − = 2 = + i s p p p ( ) p , ( ) p X s Z t t e = 2 = + i t x ( ) , ( ) Z t x x X s x x s e (position/computational basis) ˆ ( x ) i f D ≡ e
Continuous Variables − ˆ ˆ 2 2 i s p i t x ≡ ≡ (WH operators) ( ) , ( ) X s e Z t e − = 2 = + i s p p p ( ) p , ( ) p X s Z t t e = 2 = + i t x ( ) , ( ) Z t x x X s x x s e (position/computational basis) ˆ ( x ) i f D ≡ e = = = − = ˆ ˆ ˆ ˆ p x , etc. , , F x F x F p F p F x
Continuous Variables (controlled Z gate) ⊗ ˆ ˆ 2 i x x = C e (QND gate) Z
Continuous Variables (controlled Z gate) ⊗ ˆ ˆ 2 i x x = C e (QND gate) Z κ 2 λ 3 ˆ ˆ i x i x κ λ ∈ R , ( ), , , F Z t e C e ; , , t Z “ cubic phase gate ” (universal set)
Quantum Channels/Operations
Quantum Channels ρ ˆ input U ρ ˆ ancilla ε = ρ → ρ ρ ⊗ ρ ( ) Tr [ ] ˆ ˆ ˆ ˆ ( ) U U anc in in in anc
Gaussian Formalism: Channels ρ ˆ input U ρ ˆ ancilla Gaussian
Gaussian Formalism: Channels ρ ˆ input U ρ ˆ ancilla If input state has N modes, the most general Gaussian CPTP map has at most 2 N ancilla modes F. Caruso, J. Eisert, V. Giovannetti, and A. S. Holevo, New J. of Phys. 10 , 083030 (2008)
Recommend
More recommend