quantum communication from no cloning to the quantum
play

Quantum Communication from No-Cloning to the Quantum Repeater - PowerPoint PPT Presentation

Quantum Communication from No-Cloning to the Quantum Repeater Institut fr Physik, Johannes Gutenberg-Universitt Mainz Peter van Loock From No-Cloning to the Quantum Repeater WA QUANTUM, Institut fr Physik, JGU Mainz Peter van


  1. Two-Mode Squeezed State = +   ˆ ˆ ˆ ' a a a   / 2 1   1 2 = −   ˆ ˆ ˆ ' a  a a  / 2 2  1 2  − + = + r r ( 0 ) ˆ ˆ ˆ ( 0 ) a e x i e p 1 1 1 + − = + r r ( 0 ) ( 0 ) ˆ ˆ ˆ a e x i e p 2 2 2

  2. Two-Mode Squeezed State − +   = + r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x   / 2 1 1 2   − +   = r + r ( 0 ) ( 0 ) ˆ ˆ ˆ ' p e p e p   / 2 1 1 2   − +   = − r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x  e x e x  / 2 1 2 2   − +   r r = − ( 0 ) ( 0 ) ˆ ˆ ˆ ' p  e p e p  / 2 1 2 2  

  3. Two-Mode Squeezed State − +   = + r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x   / 2 1 1 2   + −   − = − + r r ( 0 ) ( 0 ) ˆ ˆ ˆ ' x e x e x   / 2 1 2 2   − +   r r = + ( 0 ) ( 0 ) ˆ ˆ ˆ ' p  e p e p  / 2 1 1 2   − +   r r + = − ( 0 ) ( 0 ) ˆ ˆ ˆ ' p  e p e p  / 2 1 2 2  

  4. Two-Mode Squeezed State ˆ ∝ + α + β + S 0 0 2 4 ... → 00 00 − 20 02 → 11 2

  5. Two-Mode Squeezed State ˆ ∝ + α + β + S 0 0 2 4 ... → 00 00 − 20 02 Like (inverse) → 11 Hong-Ou-Mandel Effect! 2

  6. Two-Mode Squeezed State 2 2 ∝ − − − + + +     2 2 r r ( , , , ) exp [ W x p x p e x x e p p     1 1 1 2 1 2 2 2     2 2 − + − − − −     2 2 r r ] e x x e p p     1 2 1 2    

  7. Gaussian States 2 ∫ iyp − ρ + = 4 ˆ e ( , ) dy x y x y W x p π 2 p = − − − − 2 2 ( , ) exp [ 2 ( ) 2 ( ) ] W x p x x p p π 0 0 x 1 − = − ξ ξ 1 T ξ ( ) exp ( / 2 ) W V π ( 2 ) det V 2nd moment covariance matrix

  8. Gaussian States 1 − = − ξ ξ 1 T ξ ( ) exp ( / 2 ) W V π ( 2 ) det V ( ) ξ = , , , x p x p 1 1 2 2 ( ) ξ ˆ = ˆ ˆ ˆ ˆ , , , x p x p 1 1 2 2     ρ ξ ˆ ξ ˆ + ξ ˆ ξ ˆ = / ˆ   Tr   V 2 ij   i j j i  

  9. Gaussian States ξ ˆ ξ ˆ = Λ [ ] , ( / 2 ) i k l kl   0 1 N ⊕   Λ = = , J J   −   1 0 = 1 k + i Λ ≥ 0 V 4 R. Simon, PRL 84 , 2726 (2000)

  10. Gaussian States   A C   = = ( 2 ) V N   T   C B + + ≤ + 1 det det 2 det 4 det A B C V 4 ( =  1 )

  11. Gaussian States   A C   = = ( 2 ) V N   T   C B + − ≤ + 1 det det 2 det 4 det A B C V 4 ( = separability  1 )

  12. Witnessing Entanglement [ ] ρ < Tr W 0 − + + < ˆ ˆ ˆ ˆ Var ( ) Var ( ) 1 x x p p 1 2 1 2 L. -M. Duan et al., PRL 84 , 2722 (2000)

  13. Quantum Information

  14. Classical versus Quantum Information ψ = α + β 0 1 0 or 1 Computational Basis States

  15. Photonic Qubit α β + 0 1 Occupation-Number Qubit: α β + 10 01 Dual-Rail Qubit: e.g., polarization of a photon… α β ↔ + 

  16. Quantum Information No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Entanglement

  17. Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Entanglement Long-Distance Universal Quantum Communication Quantum Computer

  18. Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer

  19. Entanglement: EPR, Schrödinger, and Bell “When two systems enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By the interaction the two systems have become en entan angled ed .” Schrödinger (1935)

  20. Entanglement: EPR, Schrödinger, and Bell Entanglement ∫ + − c = +   Ψ , / dx x x 01 10   2   Discrete Variables Continuous Variables E instein, P odolsky, and R osen (1935)... ... non-locality, non-realism, or hidden variables... QM incomplete

  21. Entangled Photons over 144km Zeilinger

  22. Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer

  23. Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer … Photon Loss in Fiber Channel!

  24. Cloning

  25. No-Cloning ψ  → ψ ψ

  26. No-Cloning ψ ψ ψ 0

  27. No-Cloning there is no unitary such that… ψ ψ U ψ 0

  28. No-Cloning there is no unitary such that… U

  29. No-Cloning U

  30. No-Cloning ψ = 0 0 U 0 0

  31. No-Cloning ψ = 0 0 U 0 0 U

  32. No-Cloning ψ = 0 0 U 0 0 ψ = 1 1 U 1 0

  33. No-Cloning ψ = 0 0 U 0 0 ψ = 1 1 U 1 0 + U ≠

  34. No-Cloning ψ = 0 0 U 0 0 ψ = 1 1 U 1 0 ψ = 0 + 1 + 0 0 1 1 U 0 ≠ ψ ψ

  35. No-Cloning { ( ) ( ) } + + Tr 0 0 1 1 0 0 1 1 2 = + 0 0 1 1

  36. No-Cloning { ( ) ( ) } + + Tr 0 0 1 1 0 0 1 1 2 = + 0 0 1 1 OR

  37. No-Cloning { ( ) ( ) } + + Tr 0 0 1 1 0 0 1 1 2 = + 0 0 1 1 OR ≠ 0 + 1

  38. No-Cloning there is no physical operation such that… ψ ψ ψ 0 U a

  39. No-Cloning there is no physical operation such that… ψ ψ ψ 0 U a No-Cloning Theorem ( Wootters and Zurek, Dieks, 1982 ): perfect deterministic copying device for arbitrary quantum states does not exist

  40. No Cloning No-Cloning Theorem ( Wootters and Zurek, Dieks, 1982 ): perfect deterministic copying device for arbitrary quantum states does not exist U ψ  →  ψ ψ 0 ' a a ψ  → ψ ψ 1 2 3 1 2 3 ψ ρ ψ = ψ ρ ψ ≠ out out Tr Tr 1 23 13 123 123

  41. Quantum Information & Technology No Communication Heisenberg Faster Than Light Uncertainty Relation “No-Cloning” Theorem Quantum Cryptography Quantum Teleportation Beats Beats Classical Cryptography Classical Teleportation Entanglement Long-Distance Universal Quantum Communication Quantum Computer

  42. Quantum Gates

  43. Qubits σ σ σ ≡ ≡ ≡ , , (Pauli operators) X Y Z z x y ( ) ± in particular, ± = ± ± ± ≡ / 0 1 X with 2 = = − (computational 0 0 , 1 1 Z Z basis) and, − θ / 2 i Z ≡ Z e (rotation about Z axis, etc.) θ = + = − = = 0 , 1 , , H H H X H Z H Z H X (Hadamard)

  44. Qubits ( ) nm = − 1 C n m n m controlled sign Z { } , , , H Z C Z universal set π π / 2 / 4 Z

  45. Quantum Computation with Qubits ( ) nm = − 1 C n m n m controlled sign Z { } universal set , , , H Z C Z π π / 2 / 4 Z Clifford set

  46. Dual-Rail Linear-Optics Quantum Gates ˆ k 00 a 2 modes … any single-qubit gate easy with linear elements !

  47. Multiple-Rail Linear-Optics Quantum Gates Adami, Cerf (1998) ˆ k 00 . ... 0 a d modes

  48. Multiple-Rail Linear-Optics Quantum Gates Adami, Cerf (1998) ˆ k 00 . ... 0 a d modes = N 2 d … bad scaling of optical elements… N qubit space needs control of modes

  49. Nonlinear Quantum Gates ˆ ˆ π ˆ = ˆ ˆ i a a b b Cross Kerr … U e ˆ ˆ ˆ ˆ  →  →  →  → U U U U - , , , 01 10 10 11 11 00 00 01 controlled sign gate C Z

  50. Nonlinear Quantum Gates ˆ ˆ π ˆ = ˆ ˆ i a a b b Cross Kerr … U e ˆ ˆ ˆ ˆ  →  →  →  → U U U U - , , , 01 10 10 11 11 00 00 01 controlled sign gate C Z …hard to obtain for single-photon states

  51. Nonlinear Quantum Gates π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e

  52. Nonlinear Quantum Gates → → → 00 00 00 00 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e

  53. Nonlinear Quantum Gates + + 10 01 10 01 → → → 10 10 2 2 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e

  54. Nonlinear Quantum Gates − − 10 01 10 01 → → → 01 01 2 2 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e

  55. Nonlinear Quantum Gates − − 20 02 02 20 → → → − 11 11 2 2 π − ˆ = ˆ ˆ ˆ ˆ ( / 2 ) ( 1 ) i a a a a U e

  56. Nonlinear Quantum Gates

  57. Continuous Variables − ˆ ˆ 2 2 i s p i t x ≡ ≡ (WH operators) ( ) , ( ) X s e Z t e − 2 = i s p = + p p ( ) p , ( ) p X s Z t t e = 2 i t x = + ( ) , ( ) Z t x x X s x x s e (position/computational basis)

  58. Continuous Variables − ˆ ˆ 2 2 i s p i t x ≡ ≡ (WH operators) ( ) , ( ) X s e Z t e − = 2 = + i s p p p ( ) p , ( ) p X s Z t t e = 2 = + i t x ( ) , ( ) Z t x x X s x x s e (position/computational basis) ˆ ( x ) i f D ≡ e

  59. Continuous Variables − ˆ ˆ 2 2 i s p i t x ≡ ≡ (WH operators) ( ) , ( ) X s e Z t e − = 2 = + i s p p p ( ) p , ( ) p X s Z t t e = 2 = + i t x ( ) , ( ) Z t x x X s x x s e (position/computational basis) ˆ ( x ) i f D ≡ e = = = − = ˆ ˆ ˆ ˆ p x , etc. , , F x F x F p F p F x

  60. Continuous Variables (controlled Z gate) ⊗ ˆ ˆ 2 i x x = C e (QND gate) Z

  61. Continuous Variables (controlled Z gate) ⊗ ˆ ˆ 2 i x x = C e (QND gate) Z   κ 2 λ 3 ˆ ˆ i x i x   κ λ ∈ R , ( ), , , F Z t e C e ; , , t   Z “ cubic phase gate ” (universal set)

  62. Quantum Channels/Operations

  63. Quantum Channels ρ ˆ input U ρ ˆ ancilla ε = ρ → ρ ρ ⊗ ρ ( ) Tr [ ] ˆ ˆ ˆ ˆ ( ) U U anc in in in anc

  64. Gaussian Formalism: Channels ρ ˆ input U ρ ˆ ancilla Gaussian

  65. Gaussian Formalism: Channels ρ ˆ input U ρ ˆ ancilla If input state has N modes, the most general Gaussian CPTP map has at most 2 N ancilla modes F. Caruso, J. Eisert, V. Giovannetti, and A. S. Holevo, New J. of Phys. 10 , 083030 (2008)

Recommend


More recommend