quantifying the error of light transport algorithms
play

Quantifying the Error of Light Transport Algorithms Adam Celarek, - PowerPoint PPT Presentation

Quantifying the Error of Light Transport Algorithms Adam Celarek, Wenzel Jakob Michael Wimmer, Jaakko Lehtinen TU Wien, Aalto University (Helsinki), ETH Zrich EGSR 2019 EUROGRAPHICS SYMPOSIUM ON RENDERING ///// Motivation


  1. Quantifying the Error of Light Transport Algorithms Adam Celarek¹², Wenzel Jakob³ Michael Wimmer¹, Jaakko Lehtinen² ¹TU Wien, ²Aalto University (Helsinki), ³ETH Zürich EGSR 2019 EUROGRAPHICS SYMPOSIUM ON RENDERING /////

  2. Motivation PT MLT 2/32

  3. Motivation PT MLT 3/32

  4. Motivation PT MLT 4/32

  5. Motivation PT MLT 5/32

  6. Motivation / State of the Art ● Renderings and details PT MLT A A B B C C 6/32

  7. Motivation / State of the Art PT 3 ● Renderings and details ● Error, for instance abs (R – I) MLT 1.5 0 7/32

  8. Motivation / State of the Art ● Renderings and details Torus PT MLT 5 min. ● Error, for instance MSE 0.00213 0.00278 abs (R – I) RMSE 0.00462 0.00528 ● Simple error metrics like Relative MSE or friends 0.1077 0.1446 MSE Relative 0.3282 0.3802 RMSE PSNR 74.83 73.68 8/32

  9. Motivation / Closer Look at MSE ● Render for some time, e.g., 1 hour ● Compute MSE using a high quality reference 9/32

  10. Motivation / Closer Look at MSE ● Render for some time, closed form E(MSE) MSE e.g., 5 minutes ● Compute MSE using a MSE high quality reference ● MSE depends on N, but does not converge 10 0 10 2 10 4 10 6 N 10/32

  11. Motivation / Closer Look at MSE 10 2 ● Render for some time, e.g., 5 minutes 10 0 MSE ● Compute MSE using a 10 -2 high quality reference ● MSE depends on N, but 10 -4 10 2 10 4 10 6 does not converge cpu time (t) MLT BDPT 11/32

  12. Motivation / Goals ● Convergence with N ● Notion of how reliable for a given instance ● Behaviour: frequency content and outliers 12/32

  13. Proxy Algorithm original proxy short renders vs. 1 . . . N 13/32

  14. Proxy Algorithm closed form E(MSE) ● Estimate E(MSE) old method new method – old MSE – new 10 0 10 2 10 4 10 6 N 14/32

  15. Proxy Algorithm ● Estimate E(MSE) ● Estimate per-pixel standard deviation 15/32

  16. Proxy Algorithm ● Estimate E(MSE) ● Estimate per-pixel standard deviation ● Behaviour / frequency content of error and outliers via short renderings 16/32

  17. Error Spectrum Ensemble (ESE) a) Error images mean 00-100 Example algorithm (MLT) mean 90-100 (RMSE:6.86, s:5.7, t:10x1.9s) mean 80-90 1 mean 50-80 . . . tails mean 20-50 mean 10-20 body N mean 00-10 head ensemble mean 1 . . . 0 50 100 150 200 250 0 50 100 150 200 250 N frequency N=400 frequency b) error power c) radial averages and d) Error Spectrum Ensemble spectra percentile means 17/32

  18. Error Spectrum Ensemble (ESE) 1 1 . . . . . . N N b) error power a) Error images spectra 0 50 10 c) radial percen

  19. Error Spectrum Ensemble (ESE) mean 00-100 Example algorithm (MLT) mean 90-100 (RMSE:6.86, s:5.7, t:10x1.9s) mean 80-90 mean 50-80 mean 20-50 tails mean 10-20 body mean 00-10 head 1 . ensemble mean . . N b) error power spectra 0 50 100 150 200 250 0 50 100 150 200 250 frequency frequency N=400 c) radial averages and d) Error Spectrum Ensemble percentile means

  20. Error Spectrum Ensemble (ESE) mean 00-100 Example algorithm (MLT) mean 90-100 (RMSE:6.86, s:5.7, t:10x1.9s) mean 80-90 mean 50-80 mean 20-50 tails mean 10-20 body mean 00-10 head ensemble mean 0 50 100 150 200 250 0 50 100 150 200 250 frequency frequency N=400 c) radial averages and d) Error Spectrum Ensemble 20/32 percentile means

  21. Example / Bathroom 21/32

  22. Example / Bathroom PT MLT 22/32

  23. Example / Bathroom PT MLT 23/32

  24. Example / Bathroom PT MLT 24/32

  25. Example / Bathroom PT MLT 25/32

  26. Example / Bathroom 10 10 error 10 8 0 50 100 150 200 250 N=4000 frequency PT (RMSE:11.9) MEMLT (RMSE:7.19) 26/32

  27. Example / Bottle 10 9 error 10 8 10 7 10 6 0 50 100 150 200 250 N=4000 frequency PT (RMSE:4.7) MEMLT (RMSE:32.4) 27/32

  28. Example / Bottle PT MLT 28/32

  29. Example / Bottle MLT 29/32

  30. Conclusion / Summary 30/32

  31. Conclusion / Limitations und Future Work Limitations: ● Proxy algorithm limits convergence rate based on CLT ● High complexity compared to scalar metrics like MSE ● Computation cost (short renderings + 10s of minutes) Future work: ● Local pixel correlation ● Convergence of biased but consistent algorithms 31/32

  32. End / Questions 32/32

  33. Breaking up of MLT chains (Veach Door) 33/32

  34. Changing PSSMLT Parameters (Box / large mutations) 34/32

  35. Changing PSSMLT Parameters (Box / small mutations) 35/32

  36. Smaller N of short renderings (Torus) 10 8 10 8 error error 10 6 10 6 0 50 100 150 200 250 0 50 100 150 200 250 N=40 N=400 frequency frequency PT (RMSE:1.54, s:0.0486, t:19x0.538s) PT (RMSE:1.56, s:0.0489, t:19x0.538s) MEMLT (RMSE:1.24, s:0.738, t:12x0.914s) MEMLT (RMSE:2.17, s:1.85, t:12x0.914s) 10 8 error 10 6 0 50 100 150 200 250 N=4000 frequency 36/32 PT (RMSE:1.56, s:0.0496, t:19x0.538s) MEMLT (RMSE:2.24, s:1.91, t:12x0.914s)

  37. Smaller N of short renderings (Bottle) 10 10 10 9 error error 10 8 10 8 10 7 10 6 10 6 0 50 100 150 200 250 0 50 100 150 200 250 N=40 frequency N=400 frequency PT (RMSE:4.66, s:1.93, t:5x2.06s) PT (RMSE:4.76, s:1.92, t:5x2.06s) MEMLT (RMSE:51.8, s:49.8, t:10x1.11s) MEMLT (RMSE:21.6, s:21.3, t:10x1.11s) 10 9 error 10 8 10 7 10 6 0 50 100 150 200 250 N=4000 frequency 37/32 PT (RMSE:4.7, s:1.89, t:5x2.06s) MEMLT (RMSE:32.4, s:32, t:10x1.11s)

  38. Biased but consistent algorithm 38/32

Recommend


More recommend