quantification of fibre width in biological images
play

Quantification of fibre width in biological images Lake Como School - PowerPoint PPT Presentation

Quantification of fibre width in biological images Lake Como School Computational methods for inverse problems in imaging Mathilde Galinier PhD student at the Department of Physics, Informatics and Mathematics Universit` a degli studi di


  1. Quantification of fibre width in biological images Lake Como School ”Computational methods for inverse problems in imaging” Mathilde Galinier PhD student at the Department of Physics, Informatics and Mathematics Universit` a degli studi di Modena e Reggio Emilia Wednesday, May 23rd 2018 1/14 Mathilde Galinier Quantification of fibre width in biological images

  2. Introduction Aim : Enabling a better understanding of microbial ecosystems in order to improve waste-water treatment methods. Project based on the analysis of sewage pictures. Algorithm associating Canny edge detector-related methods and statistical analysis. Figure: Raw image u , taken with a fluorescence microscope. 2/14 Mathilde Galinier Quantification of fibre width in biological images

  3. Step 1 : Convolution with Gaussian filters Image convolved by two Gaussian filters : � u 1 = K σ ∗ u u 2 = K βσ ∗ u , β < 1 with − k 2 + l 2 1 � � K σ ( k , l ) = 2 πσ 2 exp 2 σ 2 For example, a N × M Gaussian filter K σ applied to the image u provides : N − 1 M − 1 � � u 1 ij = K σ ( k , l ) u ( i − k , j − l ) k =0 l =0 which can be computed thanks to the Fourier transform : u 1 = F − 1 ( F ( K σ ) . F ( u )) 3/14 Mathilde Galinier Quantification of fibre width in biological images

  4. Step 2 : Computation of the gradient Detection of the edges of an image f ( x , y ) based on the computation of the gradient. The vector : � ∂ f � � g x � ∂ x ∇ f ( x , y ) = ( x , y ) = ( x , y ) ∂ f g y ∂ y points in the direction of the greater rate of change of f at ( x , y ). Norm of ∇ f ( x , y ) : �∇ f ( x , y ) � 2 2 = g 2 x + g 2 y Direction of ∇ f ( x , y ) : θ ( x , y ) = arctan ( g y ) g x 4/14 Mathilde Galinier Quantification of fibre width in biological images

  5. Step 2 : Computation of the gradient In our case, the matrix of interest is written, for each pixel : � G xx � C = 1 G xy � � ∇ u 1 ∇ u T 2 + ∇ u 2 ∇ u T = 1 G xy G yy 2 where :  G xx = ∂ x u 1 .∂ x u 2  G yy = ∂ y u 1 .∂ y u 2 G xx = 1 2 ( ∂ x u 1 .∂ y u 2 + ∂ y u 1 .∂ x u 2 )  Topological gradient : largest eigenvalue of C , noted λ 1 . 5/14 Mathilde Galinier Quantification of fibre width in biological images

  6. Step 2 : Computation of the gradient In our case, the matrix of interest is written, for each pixel : � G xx � C = 1 G xy � � ∇ u 1 ∇ u T 2 + ∇ u 2 ∇ u T = 1 G xy G yy 2 where :  G xx = ∂ x u 1 .∂ x u 2  G yy = ∂ y u 1 .∂ y u 2 G xx = 1 2 ( ∂ x u 1 .∂ y u 2 + ∂ y u 1 .∂ x u 2 )  Topological gradient : largest eigenvalue of C , noted λ 1 . Remark : In the case u 1 = u 2 : ∂ x u 2 � � ∂ x u 1 ∂ y u 1 1 λ 1 = ∂ x u 2 1 + ∂ y u 2 1 = �∇ u 1 � 2 C = and ∂ y u 2 2 ∂ x u 1 ∂ y u 1 1 5/14 Mathilde Galinier Quantification of fibre width in biological images

  7. Step 2 : Computation of the gradient Figure: Raw image u . 6/14 Mathilde Galinier Quantification of fibre width in biological images

  8. Step 2 : Computation of the gradient Figure: Topological gradient of u . 7/14 Mathilde Galinier Quantification of fibre width in biological images

  9. Step 3 : Non local maxima suppression 1. Find the 2 closest pixels along the edge normal. 2. Retain the pixel with maximum magnitude value. Topological gradient of u . 8/14 Mathilde Galinier Quantification of fibre width in biological images

  10. Step 3 : Non local maxima suppression 1. Find the 2 closest pixels along the edge normal. 2. Retain the pixel with maximum magnitude value. Non local maxima suppression 9/14 Mathilde Galinier Quantification of fibre width in biological images

  11. Step 4 : Hysteresis thresholding Keep pixels with a low intensity only if they are connected to a ’strong’ pixel. Binary image after hysteresis thresholding 10/14 Mathilde Galinier Quantification of fibre width in biological images

  12. Step 5 : Computation of fiber width For each non-zero pixel, the algorithm searches for another edge in the direction of the edge normal. Binary image after hysteresis thresholding 11/14 Mathilde Galinier Quantification of fibre width in biological images

  13. Statistical analysis Gauss-Newton algorithm for the fitting of the cumulative distribution functions : p � G ( p ) � 2 L 2 = � F p 1 , ··· , p K − F data � 2 min L 2 In red : Data cumulative distribution Histogram of fiber widths. Abscissa : fiber function. In blue : Fitting with lognormal width (pixels) ; Ordinate : number of fibers by category. cumulative distribution function. 12/14 Mathilde Galinier Quantification of fibre width in biological images

  14. Comparison of the cumulative distribution functions over several days Figure: Lognormal cumulative distribution functions of a sample, for days 1,2 and 14. 13/14 Mathilde Galinier Quantification of fibre width in biological images

  15. References Samuel Amstutz and J´ erˆ ome Fehrenbach. Edge detection using topological gradients: A scale-space approach. Springer Science+Business Media , Jan 2015. John Canny. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence , PAMI-8(6), Nov 1986. Nick Efford. Digital Image Processing: A Practical Introduction Using Java . Pearson Education, 2000. 14/14

Recommend


More recommend