qcd in nuclei bound nucleon structure and short range
play

QCD in Nuclei: Bound Nucleon Structure and Short-Range Correlations - PowerPoint PPT Presentation

QCD in Nuclei: Bound Nucleon Structure and Short-Range Correlations Or Hen - MIT APS Division of Particles and Fields (DPF) Summer Meeting, August 2 nd 2017, Fermilab. Nuclear / Partonic Scale Separation Nuclear Field d Quark Piglets EMC:


  1. QCD in Nuclei: Bound Nucleon Structure and Short-Range Correlations Or Hen - MIT APS Division of Particles and Fields (DPF) Summer Meeting, August 2 nd 2017, Fermilab.

  2. Nuclear / Partonic Scale Separation Nuclear Field d Quark Piglets

  3. EMC: Bound Nucleons ≠ Free Nucleons (Anti) EMC Region Fermi Motion Shadowing d Ω dE ' = σ A = 4 α 2 E ' 2 d 2 σ M sin 2 θ ν cos 2 θ ( ) = ⎡ ⎤ 2 ⋅ x ⋅ f i x ⎛ ⎞ ⎛ ⎞ ∑ ( ) 2 F ⎟ + F 2 x , Q 2 F e i 1 2 ⎜ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ Q 4 ⎣ ⎦ 2 2 i

  4. EMC: No Scale Separation ??? (Anti) EMC Region Fermi Motion Shadowing d Ω dE ' = σ A = 4 α 2 E ' 2 d 2 σ M sin 2 θ ν cos 2 θ ( ) = ⎡ ⎤ 2 ⋅ x ⋅ f i x ⎛ ⎞ ⎛ ⎞ ∑ ( ) 2 F ⎟ + F 2 x , Q 2 F e i 1 2 ⎜ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ Q 4 ⎣ ⎦ 2 2 i

  5. EMC: Nuclear Effect! JLab 4 He 9 Be 12 C 12 C 27 Al 9 Be 40 Ca 56 Fe 111 Ag 197 Au 4 He SLAC J. Gomez et al., Phys. Rev. D 49 , 4348 (1994). J. Seely et al., Phys. Rev. Lett. 103 , 202301 (2009). 5

  6. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  7. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  8. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  9. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  10. Theory: 1000 papers, 3 Ideas 1. Proper treatment of ‘known’ nuclear effects [explain some of the effect, up to x≈0.5] • Nuclear Binding and Fermi motion, Pions, Coulomb Field. • No modification of bound nucleon structure. 2. Bound Nucleons are ‘larger’ than free nucleons. • Larger confinement volume => slower quarks. • Mean-Field effect. • Momentum Independent. • Static. 3. Short-Range Correlations • Beyond the mean-field. • Momentum dependent. • Dynamical! EMC – Everyone’s Model is Cool (G. A. Miller)

  11. EMC: (non-trivial) Nuclear Effect! J. Seely et al., Phys. Rev. Lett. 103 , 202301 (2009). 11

  12. Beyond the Mean-Field: Short-Range Correlations Temporal fluctuations of Nucleon that are close together in the nucleus (wave functions overlap) => Momentum space: pairs with high relative momentum and low c.m. momentum compared to the Fermi momentum (k F )

  13. Beyond the Mean-Field: Short-Range Correlations n p

  14. EMC and SRC are Correlated! EMC Slope 0.35 ≤ X B ≤ 0.7 SRC Scaling factors X B ≥ 1.4 O. Hen et al., Int. J. Mod. Phys. E. 22 , 1330017 (2013). O. Hen et al., Phys. Rev. C 85 (2012) 047301. L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

  15. EMC and SRC are Correlated! EMC Effect Predominantly Associated EMC Slope 0.35 ≤ X B ≤ 0.7 with High-Momentum Nucleons? Practical Implications: 1. NuTeV anomaly [ask me later if interested] 2. Free neutron structure [Hen et al. PRC 2012] 1. d/u ratio at large-x B and SU(6) breaking [Hen et al. PRD SRC Scaling factors X B ≥ 1.4 2011] O. Hen et al., Int. J. Mod. Phys. E. 22 , 1330017 (2013). O. Hen et al., Phys. Rev. C 85 (2012) 047301. L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.

  16. Nucleon: Simple 2-State Model Blob-like config. (BLC) Point-like config. (PLC) PLC are smaller => Dominate high-x F 2 16

  17. Nucleon: Simple 2-State Model Blob-like config. (BLC) Point-like config. (PLC) A-1 Medium interacts with BLC, energy denominator increases, PLC Suppressed: 𝝑 𝑵 < 𝝑 17

  18. PLC Suppression Dominated by SRC! 18

  19. PLC Suppression Dominated by SRC! 19

  20. Small Amplitude => Large Probability! G.A. Miller

  21. arXiv: 1607.03065 (2016) EFT description of bound nucleon structure: EMC Slope SRC contact [SRC Scaling Factor] SRC Scaling factors

  22. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: Hen et al., Reviews of Modern Physics, In-Print (2017)

  23. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “Free” “Modification” Hen et al., Reviews of Modern Physics, In-Print (2017)

  24. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “Nuclear” “Partonic” Hen et al., Reviews of Modern Physics, In-Print (2017)

  25. Bound nucleons in EFT and QCD SRC contact 𝟑 |𝑩⟩ 𝜧 ∝ ⟨𝑩| 𝑶 C 𝑶 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: ∝ 𝒒 𝟑 − 𝒏 𝟑 𝟑𝑵 SRC dominated Hen et al., Reviews of Modern Physics, In-Print (2017)

  26. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “SRC” “Partonic” Hen et al., Reviews of Modern Physics, In-Print (2017)

  27. Bound nucleons in EFT and QCD 6 𝑦, 𝑅 5 = 𝐺 : 𝑦, 𝑅 5 + 𝑕 5 𝐵, Λ 2 𝑔 5 𝑦, 𝑅 5 , Λ 1. EFT: 𝐺 5 5 |𝑂⟩ ()*+, = 𝑂⟩ + 𝜁 ()*+, − 𝜁 2 𝑂 ∗ ⟩ 2. QCD: “SRC” “Partonic” Need to probe and constrain both SRC and the partonic modification! [In comes JLab6 - JLab12 - EIC] Hen et al., Reviews of Modern Physics, In-Print (2017)

  28. Te Test of Bound Nucleon Modification? Focus on the deuteron: (1) Perform DIS off forward going nucleon. (2) Infer its momentum from the recoil partner. F 2 bound /F 2 free (x B =0.6) Binding / Off-Shell d(e,e’n s ) Rescaling Model LAD@Hall-C BAND@Hall-B PLC Suppression α Melnitchouk et al., Z. Phys. A 359 , 99-109 (1997)

  29. Tagging Concept d(e,e’N recoil ) • High resolution spectrometers for (e,e’) measurement in DIS kinematics • Large acceptance recoil proton \ neutron detector • Long target + GEM detector – reduce random coincidence 29

  30. Building Large-Acceptance Detectors Large Acceptance Detector (LAD@Hall-C) Backward Angle Neutron Detector (BAND@Hall-B) R&D @ MIT / UTSM / TAU Construction @ BATES rimental set up for CLAS12+BAND . The left figure shows

  31. Beyond the Mean-Field: Short-Range Correlations n p

  32. High-Momentum Scaling • A/d (e,e’) cross section ratios sensitive to n A (k)/n d (k) 2N-SRC • Observed scaling for x B ≥ 1.5. => n A (k>k F ) = a 2 (A)×n d (k) K. Egiyan et al., PRL 96 , 082501(2006). L. Frankfurt et al. , Phys. Rev. C 48 , 2451 (1993). N. Fomin et al., Phys. Rev. Lett. 108 , 092502 (2012). K. Egiyan et al., Phys. Rev. C 68 , 014313 (2003).

  33. High-Momentum Scaling • A/d (e,e’) cross section ratios sensitive to n A (k)/n d (k) • Observed scaling for x B ≥ 1.5. => n A (k>k F ) = a 2 (A)×n d (k) K. Egiyan et al., Phys. Rev. C 68 , 014313 (2003).

  34. SRC Probes: Exclusive (e,e’pN) Scattering Breakup the pair => Detect both nucleons => Reconstruct ‘initial’ state

  35. 3D Reconstruction 12 C 56 Fe 208 Pb Back-to-back = SRC pairs! 35

Recommend


More recommend