proton radius and rydberg constant from electronic and
play

Proton radius and Rydberg constant from electronic and muonic atoms - PowerPoint PPT Presentation

Proton radius and Rydberg constant from electronic and muonic atoms Randolf Pohl Johannes Gutenberg-Universitt Mainz Institut fr Physik, QUANTUM und PRISMA before: Max-Planck Institute of Quantum Optics Bormio, 25. Jan. 2018 Outline


  1. Proton radius and Rydberg constant from electronic and muonic atoms Randolf Pohl Johannes Gutenberg-Universität Mainz Institut für Physik, QUANTUM und PRISMA before: Max-Planck Institute of Quantum Optics Bormio, 25. Jan. 2018

  2. Outline ● Muonic atoms as a probe of nuclear physics ( charge radii , magnetization radii, polarizabilities, …) ● The “Proton Radius Puzzle” ● Rydberg constant key parameter to check atomic physics part of the discrepancy ● Muonic helium, later Li, Be, T?

  3. The “Proton Radius Puzzle” Measuring R p using electrons: 0.88 fm ( +- 0.7%) using muons: 0.84 fm ( +- 0.05%) 0.84 fm 0.88 fm μ d 2 0 1 6 C O D A T A - 2 0 1 4 5.6 σ μ p 2 0 1 3 e - p s c a t t . μ p 2 0 1 0 H s p e c t r o s c o p y 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius R [fm] ch μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

  4. A “Proton Radius Puzzle ” ?? H o r b a t s c h , H e s s e l s , P i n e d a 2 0 1 6 H i g i n b o t h a m e t a l . 2 0 1 6 G r i ffjo e n , C a r l s o n , M a d d o x 2 0 1 6 L e e , A r r i n g t o n , H i l l 2 0 1 5 H o r b a t s c h , H e s s e l s 2 0 1 5 S i c k 2 0 1 2 P e s e t , P i n e d a 2 0 1 5 H i l l , P a z 2 0 1 0 5.6 σ ?? μ d 2 0 1 6 C O D A T A - 2 0 1 4 μ p 2 0 1 3 L o r e n z e t a l . 2 0 1 2 e - p s c a t t . μ p 2 0 1 0 B e l u s h k i n e t a l . 2 0 0 7 H s p e c t r o s c o p y 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius R [fm] ch

  5. Energy levels of hydrogen ∞ E n ≈− R ∞ 2 n Bohr formula

  6. Energy levels of hydrogen ∞ Rydberg constant E n ≈− R ∞ 2 n Bohr formula

  7. Energy levels of hydrogen ∞ E n =− R ∞ 2 + 1.2 MHz δ l 0 + Δ( n,l, j ) 2 ⟩ n ⟨ r

  8. Energy levels of hydrogen ∞ E n =− R ∞ 2 + 1.2 MHz δ l 0 + Δ( n,l, j ) 2 ⟩ n ⟨ r finite size effect

  9. Energy levels of hydrogen ∞ 2S-2P Lamb shift E n =− R ∞ 2 + 1.2 MHz δ l 0 + Δ( n,l, j ) 2 ⟩ n ⟨ r finite size effect

  10. Part 1: Muonic atoms A nucleus, orbited by one negative muon Muon mass = 200 x electron mass muonic Bohr radius = 1/200 electronic Bohr radius wave function overlap = 200 3 = 10 million times larger muon = very sensitive probe of nuclear properties

  11. Muonic Hydrogen ΔE [meV] = 209.998 – 5.226 R p 2 2P state: μ not inside proton. State insensitive. 2S-2P Lamb shift 2S state: μ spends some time inside the proton! State is sensitive to the proton size.

  12. The accelerator at PSI Villigen, AG

  13. The muon beam line in πE5

  14. The laser system Yb:YAG Disk laser → fast response on μ Frequency doubling (SHG) → green light to pump Ti:sapphire laser Ti:sapphire cw laser → determines laser frequency Ti:sapphire MOPA → high pulse energy (15 mJ) Raman cell → 3 sequential stimulated Raman Stokes shifts Laser wave length → 6 μm Target Cavity → Mirror system to fill the muon stop volume (H 2 )

  15. The hydrogen target

  16. Time Spectra 13 hours of data

  17. Time Spectra 13 hours of data prompt (t=0)

  18. Time Spectra prompt (t=0) “delayed” (t = 1 μs)

  19. Time Spectra prompt (t=0) “delayed” (t = 1 μs) resonance curve

  20. Muonic Hydrogen 0.84 fm 0.88 fm μ d 2 0 1 6 C O D A T A - 2 0 1 4 5.6 σ μ p 2 0 1 3 e - p s c a t t . μ p 2 0 1 0 H s p e c t r o s c o p y 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius R [fm] ch muonic hydrogen: 0.8409 ± 0.0004 fm 20x more accurate electronic hydrogen: 0.876 ± 0.008 fm electron scattering 0.879 ± 0.011 fm

  21. Muonic Deuterium 6 σ PRELIMINARY μD: 2.12562 (13) exp (77) theo fm (nucl. polarizability) μH + H/D(1S-2S): 2.12771 (22) fm CODATA-2014: 2.1 4 130 (250) fm RP et al. (CREMA Coll.), Science 353, 559 (2016)

  22. Deuteron radius Deuteron is CONSISTENTLY smaller! R d 2 = R 2 + R p 2 + R n 2 (+ DF) struct Pohl et al. (CREMA), Science 353, 669 (2016)

  23. Muonic Helium-4 PRELIMINARY prel. accuracy: exp +- 0.00019 fm, theo +- 0.00058 fm (nucl. polarizability) Theory: see Diepold et al. arxiv 1606.05231

  24. Muonic Helium-3 PRELIMINARY prel. accuracy: exp +- 0.00012 fm, theo +- 0.00128 fm (nucl. polarizability) Theory: see Franke et al. EPJ D 71, 341 (2017) [1705.00352]

  25. Muonic Helium-3 PRELIMINARY prel. accuracy: exp +- 0.00012 fm, theo +- 0.00128 fm (nucl. polarizability) Theory: see Franke et al. EPJ D 71, 341 (2017) [1705.00352]

  26. Muonic conclusions ● The proton radius is 0.84087 (26) exp (29) theo fm ● The deuteron radius is 2.12771 (22) fm ● both are >5σ smaller than CODATA values ● No discrepancy for the absolute radii of the helion and alpha particle (limited by e-scattering accuracy) ● BUT: The helium isotope shift!!!

  27. The 3 He – 4 He isotope shift 3 He / 4 He (squared) charge radius difference Zheng, PRL 2017 PRELIMINARY muonic He (preliminary) Cancio Pastor, PRL 2012 ** van Rooij, Science 2011 ** Shiner, PRL 1995 ** **: with recent theory 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.07 1.07 1.08 1.08 1.09 1.09 2 r 2 - r 2 [fm ] α h

  28. The 3 He – 4 He isotope shift 3 He / 4 He (squared) charge radius difference Zheng, PRL 2017 PRELIMINARY muonic He (preliminary) Cancio Pastor, PRL 2012 ** van Rooij, Science 2011 ** superseded by Zheng? Shiner, PRL 1995 ** **: with recent theory 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.06 1.06 1.07 1.07 1.08 1.08 1.09 1.09 2 r 2 - r 2 [fm ] α h Another >5σ discrepancy?!

  29. Part 2: The Rydberg constant 2 m e c R ∞ =α 2 h ● most accurately determined fundamental constant u r = 5.9 * 10 -12 ● corner stone of the CODATA LSA of fundamental constants links fine structure constant α, electron mass m e , velocity of light c and Planck’s constant h ● correlation coefficient with proton radius: 0.9891 → The “proton radius puzzle” could be a “Rydberg puzzle” ● R ∞ is a “unit converter”: atomic units → SI (Hertz)

  30. Energy levels of hydrogen ∞ Rydberg constant E n =− R ∞ 2 + 1.2 MHz δ l 0 + Δ( n,l, j ) 2 ⟩ n ⟨ r proton radius

  31. Energy levels of hydrogen ∞ measure between different n 2 unknowns → measure 2 transitions: 2S - nl 1S-2S + any other → correlated Rydberg/radius pairs Rydberg constant 1S - 2S E n =− R ∞ 2 + 1.2 MHz δ l 0 + Δ( n,l, j ) 2 ⟩ n ⟨ r proton radius

  32. Rp from H spectroscopy 5 2 μ 2 0 D + i s o C O D A T A - 2 0 1 4 μ H H a v g . 1S → 3S 1/2 5 1 2S → 12D 5/2 2S → 12D 3/2 2S → 8D 5/2 2S → 8D 3/2 2S → 8S 1/2 0 1 2S → 6D 5/2 2S → 6S 1/2 2S → 4P 3/2 2S → 4P 1/2 2S → 4D 5/2 5 2S → 4S 1/2 2S → 2P 3/2 2S → 2P 1/2 2S → 2P 1/2 0 0.82 0.84 0.86 0.88 0.9 0.92 proton charge radius r [fm] p

  33. Garching H(2S-4P) 1 st order Doppler cancellation 90° 88° ● cryogenic H beam (6 K) ● optical 1S-2S excitation (2S, F=0) ● 2S-4P transition is 1-photon: retroreflector ● split line to 10 -4 !!! ● 2.3 kHz vs. 9 kHz PRP ● large systematics Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

  34. Rp from H spectroscopy 5 2 μ 2 0 D + i s o C O D A T A - 2 0 1 4 μ H H a v g . 1S → 3S 1/2 5 1 2S → 12D 5/2 2S → 12D 3/2 2S → 8D 5/2 2S → 8D 3/2 2S → 8S 1/2 0 1 2S → 6D 5/2 2S → 6S 1/2 2S → 4P 3/2 2S → 4P 1/2 2S → 4D 5/2 5 2S → 4S 1/2 2S → 2P 3/2 2S → 2P 1/2 2S → 2P 1/2 0 0.82 0.84 0.86 0.88 0.9 0.92 proton charge radius r [fm] p

  35. Rp from H spectroscopy 5 2 2S → 4P 3/2 2S → 4P 1/2 NEW MPQ 2017 μ 0 2 D + i s o C O D A T A - 2 0 1 4 μ H H a v g . 1S → 3S 1/2 5 1 2S → 12D 5/2 2S → 12D 3/2 2S → 8D 5/2 2S → 8D 3/2 2S → 8S 1/2 0 1 2S → 6D 5/2 2S → 6S 1/2 2S → 4P 3/2 2S → 4P 1/2 2S → 4D 5/2 5 2S → 4S 1/2 2S → 2P 3/2 2S → 2P 1/2 2S → 2P 1/2 0 0.82 0.84 0.86 0.88 0.9 0.92 proton charge radius r [fm] p Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

  36. Rp from H spectroscopy LKB 2018 1S → 3S 2 5 1/2 2S → 4P MPQ 2017 3/2 2S → 4P 1/2 2 0 μ D + i s o C O D A T A - 2 0 1 4 μ H H a v g . 1S → 3S 1/2 5 1 2S → 12D 5/2 2S → 12D 3/2 2S → 8D 5/2 2S → 8D 3/2 2S → 8S 1/2 1 0 2S → 6D 5/2 2S → 6S 1/2 2S → 4P 3/2 2S → 4P 1/2 2S → 4D 5/2 5 2S → 4S 1/2 2S → 2P 3/2 2S → 2P 1/2 2S → 2P 1/2 0 0.82 0.84 0.86 0.88 0.9 0.92 proton charge radius r [fm] p Beyer, Maisenbacher, RP et al, Science 358, 79 (2017) Fleurbaey , PhD thesis (2017)

Recommend


More recommend