propositional fragments for knowledge compilation and
play

Propositional Fragments for Knowledge Compilation and Quantified - PowerPoint PPT Presentation

Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Sylvie Coste-Marquis Daniel Le Berre Florian Letombe Pierre Marquis CRIL, CNRS


  1. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Sylvie Coste-Marquis Daniel Le Berre Florian Letombe Pierre Marquis CRIL, CNRS FRE 2499 Lens, Universit´ e d’Artois, France Monday, July 11, 2005 1/15

  2. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Introduction The qbf problem ◮ Canonical PSPACE-complete problem ◮ Can be used in many AI areas: planning, nonmonotonic reasoning, paraconsistent inference, abduction, etc ◮ High complexity, both in theory and in practice ◮ A possible solution: tractable classes ◮ Instances of those tractable classes hard for current qbf solvers (e.g. (renamable) Horn benchmarks) 2/15

  3. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Introduction Outline QBF Target fragments Negation normal form Other propositional fragments Complexity results Complexity landscape A glimpse at some proofs A polynomial case Conclusion and perspectives 3/15

  4. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae QBF QBF: formal definition Definition (QBF) A QBF Π is an expression of the form ( n ≥ 0) Q 1 X 1 . . . Q n X n Φ , ◮ X 1 . . . X n sets of propositional variables ◮ Φ a propositional formula on those variables ◮ Q i (0 ≤ i ≤ n ) an existential ∃ or universal ∀ quantifier 4/15

  5. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ∀ ) Example ∀ x ∃ y 1 , y 2 [( y 1 ∨ y 2 ) ∧ ( ¬ y 2 ∨ x ) ∧ ( ¬ y 1 ∨ ¬ y 2 ) ∧ ( y 2 ∨ ¬ x )] 5/15

  6. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ∀ ) Example ∀ x ∃ y 1 , y 2 [( y 1 ∨ y 2 ) ∧ ( ¬ y 2 ∨ x ) / ∧ / / / / / / / / / / / / / / ( ¬ y 1 ∨ ¬ y 2 ) ∧ ( y 2 ∨¬ x / / / / / /)] x y 2 ¬ y 1 ⊤ 5/15

  7. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ∀ ) Example ∀ x ∃ y 1 , y 2 [( y 1 ∨ y 2 ) ∧ ( ¬ y 2 ∨ x / / / /) ∧ ( ¬ y 1 ∨ ¬ y 2 ) ∧ ( y 2 ∨ ¬ x ) /] / / / / / / / / / / / / / / x ¬ y 2 y 2 ¬ y 1 y 1 ⊤ ⊤ 5/15

  8. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ∀ ) Example ∀ x ∃ y 1 , y 2 ∃ y 1 ∀ x ∃ y 2 [( y 1 ∨ y 2 ) ∧ ( ¬ y 2 ∨ x ) ∧ [( y 1 ∨ y 2 ) ∧ ( ¬ y 2 ∨ x ) ∧ �≡ ( ¬ y 1 ∨ ¬ y 2 ) ∧ ( y 2 ∨ ¬ x )] ( ¬ y 1 ∨ ¬ y 2 ) ∧ ( y 2 ∨ ¬ x )] y 1 x ¬ y 2 y 2 x ¬ y 1 ∗ ¬ y 2 y 1 ⊤ ⊤ ⊥ ⊤ 5/15

  9. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Negation normal form Definition ( NNF [Darwiche 1999]) A formula in NNF PS is a rooted DAG where: ◮ each leaf node is labeled with true , false , x or ¬ x , x ∈ PS ◮ each internal node is labeled with ∧ or ∨ and can have arbitrarily many children Example ∨ ∧ ∧ ∨ ∨ ∨ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ¬ a ¬ b ¬ d ¬ c b a c d 6/15

  10. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Other propositional fragments Properties [Darwiche 1999] ◮ Decomposability ◮ Determinism ◮ Smoothness ◮ Decision ◮ Ordering 7/15

  11. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Other propositional fragments Fragments of NNF PS : examples Example ∨ ∧ ∧ ∨ ∨ ∨ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ¬ a ¬ b ¬ d ¬ c b a c d 8/15

  12. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Other propositional fragments Fragments of NNF PS : examples Decomposability : if C 1 , . . . , C n are the children of and-node C , then Var ( C i ) ∩ Var ( C j ) = ∅ for i � = j Example Decomposability ∨ ∧ ∧ ∨ ∨ ∨ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ¬ a ¬ b ¬ d ¬ c b a c d 8/15

  13. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Other propositional fragments Fragments of NNF PS : examples Determinism : if C 1 , . . . , C n are the children of or-node C , then C i ∧ C j | = false for i � = j Example Determinism ∨ ∧ ∧ ∨ ∨ ∨ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ¬ a ¬ b ¬ d ¬ c b a c d 8/15

  14. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Other propositional fragments Fragments of NNF PS : examples Smoothness : if C 1 , . . . , C n are the children of or-node C , then Var ( C i ) = Var ( C j ) Example Smoothness ∨ ∧ ∧ ∨ ∨ ∨ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ¬ a ¬ b ¬ d ¬ c b a c d 8/15

  15. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Target fragments Other propositional fragments Fragments of NNF PS : definitions Definition (Propositional fragments [Darwiche & Marquis 2001]) ◮ DNNF : NNF PS + decomposability. ◮ d-DNNF : NNF PS + decomposability and determinism. ◮ FBDD : NNF PS + decomposability and decision. ◮ OBDD < : NNF PS + decomposability, decision and ordering. ◮ MODS : DNF ∩ d-DNNF + smoothness. 9/15

  16. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results Complexity landscape Complexity results for qbf Fragment Complexity PROP PS (general case) PSPACE-c PSPACE-c CNF PSPACE-c DNF PSPACE-c d-DNNF PSPACE-c DNNF PSPACE-c FBDD PSPACE-c OBDD < ∈ P OBDD < (compatible prefix) PSPACE-c PI PSPACE-c IP ∈ P MODS 10/15

  17. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-NNF s-NNF DNNF f-NNF BDD d-DNNF FBDD sd-DNNF DNF CNF OBDD OBDD < MODS IP PI 11/15

  18. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-NNF s-NNF DNNF f-NNF BDD d-DNNF FBDD sd-DNNF DNF CNF OBDD OBDD < MODS IP PI 11/15

  19. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-NNF s-NNF DNNF f-NNF BDD d-DNNF FBDD sd-DNNF DNF CNF OBDD OBDD < MODS IP PI 11/15

  20. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-NNF s-NNF DNNF f-NNF BDD d-DNNF FBDD sd-DNNF DNF CNF OBDD OBDD < MODS IP PI 11/15

  21. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-NNF s-NNF DNNF f-NNF BDD d-DNNF FBDD sd-DNNF DNF CNF OBDD OBDD < MODS IP PI 11/15

  22. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-NNF s-NNF DNNF f-NNF BDD d-DNNF FBDD sd-DNNF DNF CNF OBDD OBDD < MODS IP PI 11/15

  23. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case ◮ Prefix compatible: < extension of the variable ordering induced by the prefix of the QBF ◮ Eliminating quantifiers from the innermost to the outermost ◮ Eliminating existential quantifiers ◮ Eliminating universal quantifiers ( ∀ x ≡ ¬∃ x ¬ ) ◮ Reduce the OBDD < at each elimination step ◮ Remark: Negation in constant time in OBDD < 12/15

  24. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = ∃ x ∀ y ∃ z φ φ ≡ ( x ∨ y ) ∧ z 13/15

  25. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = ∃ x ∀ y ∃ z φ φ ≡ ( x ∨ y ) ∧ z x φ = y ⊥ z ⊥ ⊤ 13/15

  26. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = ∃ x ∀ y ∃ z φ φ ≡ ( x ∨ y ) ∧ z x ∃ z φ = y ⊥ ⊤ 13/15

  27. Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = ∃ x ∀ y ∃ z φ φ ≡ ( x ∨ y ) ∧ z x ¬∃ z φ = y ⊤ ⊥ 13/15

Recommend


More recommend