probing the stability of many body localization
play

Probing the Stability of Many-Body Localization Christian Gro - PowerPoint PPT Presentation

Probing the Stability of Many-Body Localization Christian Gro Max-Planck-Institut fr Quantenoptik, Garching Controlling quantum matter: From ultracold atoms to solids, Vilnius, 01.08.2018 Magnetic Polarons in Fermi Hubbard Systems Christian


  1. Probing the Stability of Many-Body Localization Christian Groß Max-Planck-Institut für Quantenoptik, Garching Controlling quantum matter: From ultracold atoms to solids, Vilnius, 01.08.2018

  2. Magnetic Polarons in Fermi Hubbard Systems Christian Groß Max-Planck-Institut für Quantenoptik, Garching Controlling quantum matter: From ultracold atoms to solids, Vilnius, 01.08.2018

  3. The physics of complex solid state materials Cuprate unit cell (YBa 2 Cu 3 O 7 ) Wikipedia Keimer, Nature 2015 Prominent electronic toy model: Hubbard model Christian Review: Lee, RMP 2006 Groß

  4. Hubbard models in optical lattices A crystal made by interference of light Christian Groß

  5. Hubbard models in optical lattices A crystal made by interference of light Mobile quantum particles in the lattice - Hubbard models Emerging magnetic energy scale Christian Groß

  6. A specialized quantum gas microscope alignment beam lattice beam (optical axis) mirror lattice piezo objective Fourier plane Atomic plane Christian Groß

  7. A specialized quantum gas microscope alignment beam lattice beam (optical axis) mirror lattice piezo objective Fourier plane Atomic plane Independent optical lattices for imaging Christian Groß

  8. Imaging spins and "charges" Christian Boll, Science 2016 Groß

  9. Imaging spins and "charges" Full local information: Density and Spin Access to spin-spin and spin-density correlations Christian Boll, Science 2016 Groß

  10. Doping the 1d Hubbard model Charge sector: Delocalization Spin sector: Antiferromagnetism Christian Groß

  11. Doping the 1d Hubbard model Charge sector: Delocalization Spin sector: Antiferromagnetism What is the spin alignment around holes? Christian Groß

  12. Doping the 1d Hubbard model Charge sector: Delocalization Spin sector: Antiferromagnetism What is the spin alignment around holes? Christian Groß

  13. Doping the 1d Hubbard model Charge sector: Delocalization Spin sector: Antiferromagnetism What is the spin alignment around holes? Christian Groß

  14. Spin alignment across holes 0.1 0.0 C ( d ) Correlation -0.1 -0.2 -0.3 1 2 3 4 5 6 Distance d (sites) Christian Hilker, Science 2017 Groß

  15. Spin alignment across holes 0.1 0.0 C ( d ) Correlation -0.1 -0.2 -0.3 1 2 3 4 5 6 Distance d (sites) Christian Hilker, Science 2017 Groß

  16. Hidden correlations AFM parity fl ips suppress the standard 2-point correlator 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Christian Groß

  17. Hidden correlations AFM parity fl ips suppress the standard 2-point correlator 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Reveal hidden spin correlations in "squeezed space" 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 discard sites with holes 1 2 4 5 6 8 Christian Kruis, PRB 2004 | Kruis, EPL 2004 Groß

  18. Correlations in squeezed space Standard 2-point correlator 0.0 C ( d ) 0.95 < n < 1.05 -0.2 0.65 < n < 0.75 0.35 < n < 0.45 1 2 3 4 5 Distance d (sites) Christian Hilker, Science 2017 Groß

  19. Correlations in squeezed space Standard 2-point correlator Squeezed space 2-point correlator 0.0 0.0 str ( d ) C ( d ) C 0.95 < n < 1.05 -0.2 -0.2 0.65 < n < 0.75 0.35 < n < 0.45 1 2 3 4 5 1 2 3 4 5 Distance d (sites) Distance d (sites) Spin-charge separation Christian Hilker, Science 2017 Groß

  20. Incommensurate magnetism - charge Holes / Doublons dilute (stretch) the spin correlations 1 Correlation C(d) 10 -2 10 -1 0 -10 -1 -10 -2 -1 5 1 2 3 4 6 Distance d (sites) Christian Salomon, arXiv: 1803.08892 Groß

  21. Incommensurate magnetism - charge Holes / Doublons dilute (stretch) the spin correlations 1 Correlation C(d) 10 -2 10 -1 0 -10 -1 -10 -2 -1 5 1 2 3 4 6 Distance d (sites) Christian Salomon, arXiv: 1803.08892 Groß

  22. Incommensurate magnetism - charge Holes / Doublons dilute (stretch) the spin correlations 1 1 Correlation C(d) 1.2 10 -2 10 -1 1 Density n 0.6 0 0.8 -10 -1 0.6 -10 -2 0.2 -1 0.4 5 1 2 3 4 6 1 0.8 0.6 0.4 0.2 0 Distance d (sites) Wave vector k ( /d) Linear density dependence of the wave vector (as expected by Luttinger theory) Christian Salomon, arXiv: 1803.08892 Groß

  23. Thank you! The Lithiums Summary Hidden magnetism 1 2 3 4 5 6 7 8 spin-charge separation 1 2 3 4 5 6 7 8 1 2 4 5 6 8 Guillaume Joannis Timon Incommensurate magnetism Magnetic polarons Mim Jayadev Immanuel + Eugene and Fabian @ Harvard Christian Groß

Recommend


More recommend