probing the properties of soft matter by optimally
play

Probing the properties of soft matter by optimally designed - PowerPoint PPT Presentation

Probing the properties of soft matter by optimally designed nonequilibrium experiments Carsten Hartmann (FU Berlin) Newton Institute, Cambridge, UK, 14 December 2015 Predicting molecular flexibility Estimation of molecular properties in


  1. Probing the properties of soft matter by optimally designed nonequilibrium experiments Carsten Hartmann (FU Berlin) Newton Institute, Cambridge, UK, 1–4 December 2015

  2. Predicting molecular flexibility ◮ Estimation of molecular properties in thermodynamic equilibrium , e.g. e − W � � F = − log E . (includes rates, statistical weights, etc.) ◮ Perturbation drives the system out of equilibrium with likelihood quotient ϕ = d µ 0 d µ . ◮ Experimental and numerical realization: AFM, SMD, TMD, Metadynamics, . . . [Schlitter, J Mol Graph, 1994], [Schulten & Park, JCP, 2004], [H. et al, Proc Comput Sci, 2010]

  3. Set-up (estimation problem) Given an “equilibrium” diffusion process X = ( X t ) t ≥ 0 on R n , dX t = b ( X t ) dt + σ ( X t ) dB t , X 0 = x , we want to estimate path functionals of the form e − W ( X ) � � ψ ( x ) = E Example: mean passage time to a set C ⊂ R n Let W = ατ C . Then, for sufficiently small α > 0, − α − 1 log ψ = E [ τ C ] + O ( α )

  4. Guiding example: bistable system 7 6 ◮ Overdamped Langevin equation 5 4 √ 3 V dX t = −∇ V ( X t ) dt + 2 ǫ dB t . 2 1 0 ◮ Small noise asymptotics (Kramers) − 1 − 2 − 1.5 − 1 − 0.5 0 0.5 1 1.5 x ǫ → 0 ǫ log E [ τ C ] = ∆ V . lim 6000 5000 4000 ◮ Standard MC estimator of ψ fails: time (ns) C � 3000 2000 E [ e − 2 ατ C ] ≫ ( E [ e − ατ C ]) 2 1000 0 − 1.5 − 1 − 0.5 0 0.5 1 1.5 x [Freidlin & Wentzell, 1984], [Berglund, Markov Processes Relat Fields 2013]

  5. Outline Sampling of rare events based on optimal control Optimal controls from cross-entropy minimization High-dimensional problems and suboptimal controls

  6. Sampling of rare events based on optimal control Optimal controls from cross-entropy minimization High-dimensional problems and suboptimal controls

  7. Guiding example, cont’d � ◮ Mean first passage time for small ǫ � � E [ τ C ] ≍ exp(∆ V /ǫ ) � � � � ◮ Adaptive tilting of the potential � � � � � ��� � � � ��� � ��� � ��� � U ( x , t ) = V ( x ) − u t x 6000 5000 decreases the energy barrier. 4000 time (ns) ◮ Controlled Langevin equation 3000 2000 √ dX u t = ( u t − ∇ V ( X u t )) dt + 2 ǫ dB t . 1000 0 − 1.5 − 1 − 0.5 0 0.5 1 1.5 x

  8. Can we systematically speed up the sampling while controlling the variance by tilting the energy landscape?

  9. Estimation problem revisited Given a “nonequilibrium” (tilted) diffusion process X u = ( X u t ) t ≥ 0 , dX u t = ( b ( X u t ) + σ ( X u t ) u t ) dt + σ ( X u X u t ) dB t , 0 = x , estimate a reweigthed version of ψ : e − W ( X u ) ϕ ( X u ) e − W ( X ) � = E µ � � � E with equilibrium/nonequilibrium likelihood ratio ϕ = d µ 0 d µ . Remark: We allow for W ’s of the general form � τ W ( X ) = f ( X s , s ) ds + g ( X τ ) , 0 for suitable functions f , g and a stopping time τ < ∞ (a.s.).

  10. Sufficient condition for optimal nonequilibrium forcing Theorem (H, 2012) Let u ∗ be a minimizer of the cost functional � τ u � W ( X u ) + 1 � | u s | 2 ds J ( u ) = E 4 0 under the nonequilibrium dynamics X u t , with X u 0 = x . Then, ψ ( x ) = e − W ( X u ∗ ) ϕ ( X u ∗ ) (a.s.) . Moreover, u ∗ is unique. Proof: Jensen’s inequality and Girsanov’s theorem. [H & Sch¨ utte, JSTAT, 2012], [H et al, Entropy, 2014]

  11. Guiding example, cont’d ◮ Exit problem: f = α , g = 0, τ = τ C : � � τ u � � � C + 1 C | u s | 2 ds J ( u ∗ ) = min ατ u � u E 4 � 0 � � ◮ Recovering equilibrium statistics : � � � � � � ��� � � � ��� � ��� � ��� � d � � J ( u ∗ ) E [ τ C ] = � 6000 d α � α =0 5000 ◮ Optimally tilted potential 4000 time (ns) 3000 2000 U ∗ ( x , t ) = V ( x ) − u ∗ t x 1000 0 with stationary feedback u ∗ t = c ( X u ∗ − 1.5 − 1 − 0.5 0 0.5 1 1.5 t ). x

  12. Yet, . . .

  13. . . . there is a catch The optimal control is a feedback control in gradient form , u ∗ t = − 2 σ ( X u ∗ t ) T ∇ F ( X u ∗ t ) , with the bias potential being the value function F ( x ) = min u J ( u ) . NFL Theorem I: The bias potential is given by F = − log ψ . NFL Theorem II: F solves a nonlinear Hamilton-Jacobi-type PDE, − ∂ F x , F , ∇ F , ∇ 2 F � � ∂ t + H = 0 . (Remark: In some cases, F may be explicitly time-dependent.) [H & Sch¨ utte, JSTAT, 2012], [H et al, Entropy, 2014]; cf. [Fleming, SIAM J Control, 1978]

  14. Sampling of rare events based on optimal control Optimal controls from cross-entropy minimization High-dimensional problems and suboptimal controls

  15. Two key facts about our control problem

  16. Fact #1 The optimal control is a feedback law of the form ∞ � u ∗ t = σ ( X u c i ∇ φ i ( X u t ) t ) , i =1 with coefficients c i ∈ R and suitable basis functions φ i ∈ C 1 ( R n ).

  17. Fact #2 Letting µ denote the probability (path) measure on C ([0 , ∞ )) associated with the tilted dynamics X u , it holds that J ( u ) − J ( u ∗ ) = KL ( µ, µ ∗ ) with µ ∗ = µ ( u ∗ ) and � d µ � �  if µ ≪ µ ∗ log d µ  KL ( µ, µ ∗ ) = d µ ∗ ∞ otherwise  the Kullback-Leibler divergence between µ and µ ∗ .

  18. Cross-entropy method for diffusions Idea: seek a minimizer of J among all controls of the form M � u t = σ ( X u α i ∇ φ i ( X u φ i ∈ C 1 ( X ) . ˆ i ) t ) , i =1 and minimize the Kullback-Leibler divergence S ( µ ) = KL ( µ, µ ∗ ) over all candidate probability measures of the form µ = µ (ˆ u ). Remark: unique minimizer is given by d µ ∗ = ψ − 1 e − W d µ 0 . cf. [Oberhofer & Dellago, CPC, 2008], [Aurell et al, PRL, 2011]

  19. Unfortunately, . . .

  20. Cross-entropy method for diffusions, cont’d . . . that doesn’t work without knowing the normalization factor ψ . Feasible cross-entropy minimization Minimization of the relaxed functional KL ( µ ∗ , · ) is equivalent to cross-entropy minimization : minimize � log µ d µ ∗ CE ( µ ) = − u ), with d µ ∗ ∝ e − W d µ 0 . over all admissible µ = µ (ˆ Note: KL ( µ, µ ∗ )=0 iff KL ( µ ∗ , µ ) = 0, which holds iff µ = µ ∗ . [Rubinstein & Kroese, Springer, 2004], [Zhang et al, SISC, 2014], [Badowski, PhD thesis, 2015]

  21. Example I (guiding example)

  22. Computing the mean first passage time ( n = 1) Minimize � τ C � ατ + 1 � | u t | 2 dt J ( u ; α ) = E 4 0 with τ C = inf { t > 0: X t ∈ [ − 1 . 1 , − 1] } and the dynamics t )) dt + 2 − 1 / 2 dB t dX u t = ( u t − ∇ V ( X u 2.5 160 140 2 120 100 1.5 E x ( τ ) V(x) 80 1 60 40 0.5 20 0 0 −1.5 −1 −0.5 0 0.5 1 1.5 −2 −1 0 1 2 x x Skew double-well potential V and MFPT of the set S = [ − 1 . 1 , − 1] (FEM reference solution).

  23. Computing the mean first passage time, cont’d Cross-entropy minimization using a parametric ansatz 10 � c ( x ) = α i ∇ φ i ( x ) , φ i : equispaced Gaussians i =1 4 1.2 3.5 1 E x ( τ ) with opt. control 3 0.8 (V+U)(x) 160 2.5 140 0.6 120 2 100 E x ( τ ) 80 0.4 60 1.5 40 20 0.2 1 0 − 2 − 1 0 1 2 x 0.5 0 −1.5 −1 −0.5 0 0.5 1 1.5 − 1 − 0.5 0 0.5 1 1.5 x x Biasing potential V + 2 F and unbiased estimate of the limiting MFPT. cf. [H & Sch¨ utte, JSTAT, 2012]

  24. Sampling of rare events based on optimal control Optimal controls from cross-entropy minimization High-dimensional problems and suboptimal controls

  25. The bad news

  26. The good news 20 15 10 Bound for the relative sampling error V ε (x) 5 for suboptimal controls ¯ u based on 0 -5 averaged equations of motion: -10 -6 -4 -2 0 2 4 6 x 9 � τ fast Theo. Value Fun.: ε = 0.3 8 � 1 / 8 Opt. Value Func.: Homogenized C 7 √ 6 δ rel ≤ . 5 τ slow V(x) N 4 3 2 ( N : sample size, C ≈ 1) 1 0 -5 -4 -3 -2 -1 0 1 2 x 9 Opt. Control: ε = 0.3 8 Opt. Control: Homogenized Opt. Control Correction: ε = 0.3 7 Remark: δ ∗ rel = 0 for u = u ∗ . 6 5 u(x) 4 3 2 1 0 -5 -4 -3 -2 -1 0 1 2 x [H et al, J Comp Dyn, 2014], [Zhang et al, Prob Theory Rel Fields, submitted]

  27. The good news, cont’d 20 Averaged control problem : minimize 15 10 � τ v V ε (x) 5 � W ( ξ v ) + 1 � | v s | 2 ds ¯ 0 I ( v ) = E 4 -5 0 -10 -6 -4 -2 0 2 4 6 x 9 subject to the averaged dynamics Theo. Value Fun.: ε = 0.3 8 Opt. Value Func.: Homogenized 7 6 5 t = ( v t − ¯ V(x) d ξ u b ( ξ v σ ( ξ v t )) dt + ¯ t ) dB t 4 3 2 1 0 -5 -4 -3 -2 -1 0 1 2 x 9 Opt. Control: ε = 0.3 8 Opt. Control: Homogenized Opt. Control Correction: ε = 0.3 Control approximation strategy 7 6 5 u(x) 4 t ≈ c ( ξ ( X u ∗ t )) = ∇ ξ ( X u ∗ u ∗ t ) v ∗ 3 t 2 1 0 -5 -4 -3 -2 -1 0 1 2 x [H et al, Nonlinearity, submitted]; cf. [Legoll & Leli` evre, Nonlinearity, 2010]

  28. Example II (suboptimal control)

Recommend


More recommend