Print version Updated: 9 March 2020 Lecture #28 Coordination Chemistry: Hydrolysis and Simple Complexes (Stumm & Morgan, Chapt.6: pg.281-289) Benjamin; Chapter 8.1-8.6 David Reckhow CEE 680 #28 1
Stability Constants Martell & Smith,1977: Critical Stability Constants Vol. 1: Amino Acids Vol. 2: Amines Vol. 3: Other Organic Ligands Vol. 4: Inorganic Complexes Vol. 5: Supplement David Reckhow CEE 680 #28 2
David Reckhow CEE 680 #28 3
Sources: Stumm & Morgan, 3 rd Ed. Pg. 326 From Morel & Hering, 1993 David Reckhow CEE 680 #28 4
Sources: Stumm & Morgan, 2 nd Ed. Pg. 242 David Reckhow CEE 680 #28 5
Reconciling the constants: Al(OH) 3 S&M:3 rd Edition S&M:2 nd Edition α -Al(OH) 3 (s) + 3H + = AlL 3 s 10 33.5 Al +3 + 3 H 2 O AlL ( s ) = 33 . 5 3 10 * K so 8.5 • L 3 Al + 3 [ Al ] 3 K = 8 . 5 10 − = + − = + 33 . 5 3 3 3 10 [ Al ][ OH ] [ Al ] w + 3 + [ H ] 3 [ H ] + + = + = − − + 3 8 . 5 3 3 33 . 5 14 3 3 [ Al ] 10 [ H ] [ Al ] 10 ( 10 ) [ H ] + + = − 3 = − 3 log[ Al ] 8 . 5 3 pH log[ Al ] 8 . 5 3 pH David Reckhow CEE 680 #28 6
Metal Hydrolysis Case for iron + 2H + + H + Fe(H 2 O) 6 +3 FeOH(H 2 O) 5 +2 Fe(OH) 2 (H 2 O) 4 + + 3H + + 4H + Fe(OH) 3 (H 2 O) 3 Fe(OH) 4 (H 2 O) 2 - Fe(OH) 3 (s) David Reckhow CEE 680 #28 7
+2 FeOH(H 2 O) 5 Fe O H David Reckhow CEE 680 #28 8
+ Fe(OH) 2 (H 2 O) 4 H O Fe O H David Reckhow CEE 680 #28 9
Dimer H O Fe Fe O H David Reckhow CEE 680 #28 10
Metals and acidity Metals increase the acidity of water Greater as: Metal charge increases Metal radius decreases As acidity increases, the predominant species progresses down the list Aquo ion Hydroxo complex Hydroxy-oxo complex Oxo complex David Reckhow CEE 680 #28 11
Fig 6.4a 15 Pg.262 David Reckhow CEE 680 #28 12
[ ][ ] + + Zn ( OH ) H *K 1 * = K 1 + 2 [ Zn ] A measure of the extent/strength of hydrolysis The first hydrolysis constant pK 1 of an aqua metal ion is dependent on the ionic charge and radius of the metal ion. The pK 1 values of the aqua metal ions, studied here at 25°C follow, the order: Pb (7.8) ~ Cu (8.0) < Zn (8.96) < Co (9.85) < Ni (9.86) < Ag (11.1) Barauh et al., 2014 [J. Geochem] Fig 6.4c Stumm & Morgan Pg.262 David Reckhow CEE 680 #28 13
As pK 1 goes up strength of OH complex goes down Complexation of hydroxide? Pb (7.8) ~ Cu (8.0) > Zn (8.96) > Co (9.85) > Ni (9.86) > Ag (11.1) David Reckhow CEE 680 #2 14
Stability Constants Addition of a Ligand L L L L → → → → K K K K M ML ML ML ML 1 2 i n 2 i n β 1 β 2 β i β n [ ML ] [ ML ] = β = K i i i i i [ ML ][ L ] [ M ][ L ] − ( i 1 ) David Reckhow CEE 680 #28 15
Stability Constants Addition of protonated Ligands HL HL HL HL → → → → K K K K M ML ML ML ML 1 2 i n 2 i n β 1 β 2 β i β n + + i [ ML ][ H ] [ ML ][ H ] = β = K i i i i i [ ML ][ HL ] [ M ][ HL ] − ( i 1 ) David Reckhow CEE 680 #28 16
EDTA Hexadentate Ligand Ethylenediamine Tetraacetic Acid Free form Complexed with a metal Interest to Env. Eng. Used in pollutant analysis Model for NOM Used for controlling scale Huang et al., 2000 [JEED 126:10:919] From: Butler, 1964 David Reckhow CEE 680 #28 17
Ni-hexammine Tris(ethylene) diamine nickel (II) Butler, 1964; pg.374 David Reckhow CEE 680 #28 18
From: Morel & Hering, 1993 David Reckhow CEE 680 #28 19
Development of alpha Recall: [ ] [ ML ] Zn ( OH ) β = i β = = 2 K K i i [ M ][ L ] 2 1 2 + − 2 2 [ Zn ][ OH ] So: [ ML ] [ ML ] β = β = 3 2 3 2 3 2 [ M ][ L ] [ M ][ L ] Etc. and [ ML ] [ ML ] = β 3 = β 2 3 [ L ] 2 [ L ] 3 2 [ M ] [ M ] David Reckhow CEE 680 #28 20
Alpha (cont.) Now let’s define, and alpha value [ M ] [ M ] α ≡ = And inverting the right hand side: 0 + + + + C [ M ] [ ML ] [ ML ] [ ML ] M 2 n − 1 + + + + [ M ] [ M ] [ ML ] [ ML ] [ ML ] α ≡ = 2 n 0 C [ M ] M − 1 [ M ] [ ML ] [ ML ] [ ML ] = + + + + 2 n [ M ] [ M ] [ M ] [ M ] ( ) − 1 [ ML ] = + β + β + + β 2 n 1 [ L ] [ L ] [ L ] β = 2 1 2 n 2 2 [ M ][ L ] [ ML ] = β 2 2 [ L ] 2 David Reckhow CEE 680 #28 [ M ] 21
Alpha (cont.) Now other alpha’s can be determined [ ML ] [ M ] [ ML ] [ ML ] α ≡ = β = 1 1 C C [ M ] [ M ][ L ] M M = α β [ ML ] [ L ] And = β [ L ] 0 1 1 [ M ] [ ML ] [ M ] [ ML ] α ≡ = 2 2 2 C C [ M ] [ ML ] M M β = 2 2 2 = α β 2 [ M ][ L ] [ L ] 0 2 So in general [ ML ] = β 2 2 [ L ] 2 [ M ] [ ML ] α ≡ = α 0 β n n [ L ] n n C M David Reckhow CEE 680 #28 22
Summary In summary: ( ) [ M ] − 1 α ≡ = + β + β + + β 2 n 1 [ L ] [ L ] [ L ] 0 1 2 n C M [ ML ] α ≡ = α 0 β n n [ L ] n n C M So if we know [L] and the β ’s we can determine the entire speciation of the metal This is analogous to the α ’s of the acid/base systems Where if you know [H + ] and the α ’s , you can determine the entire acid/base speciation David Reckhow CEE 680 #28 23
To next lecture David Reckhow CEE 680 #28 24
Fig 6.4b Pg.262 David Reckhow CEE 680 #28 25
Recommend
More recommend