presenter yunfeng gu supervisor azzedine boukerche
play

Presenter: Yunfeng Gu Supervisor: Azzedine Boukerche PARADISE - PowerPoint PPT Presentation

Presenter: Yunfeng Gu Supervisor: Azzedine Boukerche PARADISE Research Laboratory University of Ottawa, Canada Supporting Multi-dimensional Range Query in the P2P Network DS-RT 2011 . P2P A Appli


  1. Presenter: Yunfeng Gu Supervisor: Azzedine Boukerche PARADISE Research Laboratory University of Ottawa, Canada Supporting Multi-dimensional Range Query in the P2P Network

  2. DS-RT 2011 .  P2P A Appli lications ns  Di Distributed d directory s y sys ystems ms  P2P d doma main na n name me s services  Network f k file le s sys ystems ms  Massively p ly paralle llel s l sys ystems ms  Di Distributed e e-ma -mail s l sys ystems ms  Massive-s -scale le f fault lt-t -tole lerant nt s sys ystem m  ... ... 2

  3. DS-RT 2011 . Put k key y Remo move Ge Get k key y Get Ge Put Pu Return n Remo move Return n data data key y data data Request t to Respons nse f from m nodes no nodes no Peer Pe Pe Peer Pe Peer Peer Pe Peer Pe Pe Peer Peer Pe 3

  4. DS-RT 2011 .  Appli lications ns  Mult lti-p -pla layer g game mes  Gr Grid c computing ng  Publi lish/ h/Subscribe s sys ystems ms  Gr Group c commu mmuni nications ns  Name me s services  P2P d data s sha haring ng  Glo Global s l storage  ... ... 4

  5. DS-RT 2011 . Get Ge Put r Put k rang key nges y Remo Remo move move Get k Ge key y Return Return n n rang nges Da Data data data Key rang y nges data data data data Request t to Respons nse f from m nodes no no nodes Peer Pe Pe Peer Pe Peer Pe Peer Pe Peer Pe Peer Pe Peer 5

  6. DS-RT 2011 . Ge Get Put r rang nges Remo move Return n rang nges data data rang nges data data Request t to Respons nse f from m no nodes no nodes Pe Peer Pe Peer Peer Pe Peer Pe Pe Peer Pe Peer Pe Peer 6

  7. DS-RT 2011 .  Go Goal l  Better p preserve d data lo locali lities  Sche heme mes  K-d -d t tree [1] [1]  Quad t tree [2. 3 . 3]] 7

  8. DS-RT 2011 .  Go Goal l  Better p preserve d data lo locali lities  Sche heme mes  K-d -d t tree [1] [1]  Quad t tree [2. 3 . 3]  Z-o -order S SFC [4. 6 . 6]  Hilb lbert S SFC [5] [5] Copy from Wiki 8

  9. DS-RT 2011 .  Observations ns 1 1  Da Data lo locali lities e expand nd e expone nent ntially a lly as t the he d dime mens nsiona nali lity o y of d data s space inc ncreases 1-D d -D data s space 2-D d -D data s space 3-D d -D data s space 9

  10. DS-RT 2011 .  Observations ns 2 2  Da Data lo locali lities e extend nd e expone nent ntially a lly as t the he o order o of t the he r recursive decomposition i n inc ncreases 10

  11. DS-RT 2011 .  Cha halle lleng nge  How t to a accommo mmodate a and nd ma maint ntain d n data lo locali lities w with a h an n expone nent ntially e lly expand nding ng a and nd e extend nding ng r rate a at P P2P la layer  Go Goal l  MDR DRQ c can b n be d done ne a at a a r reasona nable le r routing ng c cost 11

  12. DS-RT 2011 . P2P S Sys ystems ms Partitioni ning ng Und nderlyi lying ng a archi hitecture Di Direct ma mapping ng DHT-based ... DHT ... ... SCARP [10] Z-order/Hilbert SFC Skip graphs [7] No MURK [10] K-d tree d-torus (CAN) [8] No ZNet [11] Z-order/Quad tree Skip graphs No Skipindex [12] K-d tree Skip graphs No Squid [13] Hilbert SFC Ring (Chord) [9] No SONAR [14] K-d tree d-torus (CAN) No SkipNet [15] Naming tree Skip graphs No P-Grid [16] Binary search tree Flat graphs No Mercury [17] Random sampling Ring No 12

  13. DS-RT 2011 . 13

  14. DS-RT 2011 . Ge Get Put r rang nges Remo move Return n rang nges data data rang nges data data Request t to Respons nse f from m nodes no no nodes Pe Peer Pe Peer Peer Pe Pe Peer Pe Peer Pe Peer Peer Pe 14

  15. DS-RT 2011 . R R 0 0 1 1 2 2 3 3 00 0 01 1 02 2 03 3 10 0 11 1 12 2 13 3 20 0 21 1 22 2 23 3 30 0 31 1 32 2 33 3 15

  16. DS-RT 2011 . HParent nt DP DParent nt HParent nt & & DP DParent nt 00 00 01 01 00 00 001 00 1 001 00 1 000 000 SPEER SPEER DC DChi hild ldren HChi hild ldren DC DChi hild ldren HChi hild ldren 000 001 1 00 0010 0 0011 00 1 0000 0000 000 0001 1 100 001 1 1000 000 200 001 1 00 0012 2 2000 000 000 0002 2 300 001 1 00 0013 3 3000 000 000 0003 3 16

  17. DS-RT 2011 . Ro Root HParent nt DParent DP nt HParent nt & & DP DParent nt 00 001 1 000 000 000 000 0001 000 1 000 0001 1 0000 0000 SPEER SPEER 17

  18. DS-RT 2011 . R R 0 0 1 1 2 2 3 3 00 0 01 1 02 2 03 3 10 0 11 1 12 2 13 3 20 0 21 1 22 2 23 3 30 0 31 1 32 2 33 3 18

  19. DS-RT 2011 . Data s Da structure Routing ng t table le s size Total li l links nks (Neighb hbors) HD Tree ≤ 2( k + 1) 2( n – 1) – k × h Tree ≤ k + 1 n – 1 Chord log( n ) ? CAN 2 d ? Skip graphs O( m · log( m )) ? k : k -ary tree h : height of tree n : total nodes in the system d : d-torus, number of dimensions m : total number of data elements 19

  20. DS-RT 2011 . HParent nt DP DParent nt 00 00 01 01 00 00 01 01 00 001 1 00 001 1 00 001 1 001 00 1 DC DChi hild ldren HChi hild ldren 000 001 1 00 0010 0 000 001 1 0010 00 0 0011 00 1 100 001 1 100 001 1 00 0011 1 200 001 1 0012 00 2 200 001 1 0012 00 2 300 001 1 00 0013 3 300 001 1 0013 00 3  2HP a and nd 2 2DP DP ha has o only o nly one ne o option n  A no node i in k n k-ar ary H HD t D tree c can ha n have a at  2HC a and nd 2 2DC DC ha has a at mo most k o k options ns most k mo k HChi hild ldren a and nd k k Dc Dchi hild ldren  But o only 1 nly 1 HParent nt a and nd 1 1 Dp Dparent nt 20

  21. DS-RT 2011 .  Hierarchi hical R l Routing ng ( (HR) c cons nsists o of  a s series o of 2 2HP o or 2 2DP DP o operations ns, o , or  a s series o of 2 2HC o or 2 2DC DC o operations ns abc bcd R dbc bcac ac bc bc a d d ab db b bc bcd bca bc abc bc dbc bc dbc bca dbc bca abc bcd abc bcd dbc bcac ac dbc bcac ac 21

  22. DS-RT 2011 .  A d distributed o operation c n cons nsists o of t two hi hierarchi hical o l operations ns 00 00 01 01 001 00 1 012 01 200 200 00 001 1 00 0012 12 200 2001 1 22

  23. DS-RT 2011 .  A d distributed o operation c n cons nsists o of t two hi hierarchi hical o l operations ns 00 00 01 01 001 01 201 01 003 00 3 001 00 1 23

  24. DS-RT 2011 .  Di Distributed r routing ng ( (DR DR) i is a a s series o of d distributed o operations ns  DR DR c can r n reach t h the he DS DST no node i in ( n (2 2 х d ) ho hops t time me a at w worst bc bc cd de de ab ab fa ef ef abc abc abc abc fab ab ef efa def def bcd bc cde de def def abc abc def def bc bc ce ef ef ab ab ea a de de abc abc abc abc eab ab de dea def def bce bc cef ef def def Note: d d = depth of node in HD tree = length of the code 24

  25. DS-RT 2011 .  DR DROCR i is a a DR DR o orient nted c comb mbine ned r routing ng a alg lgorithm hm  DR DROCR c can r n reach a h any no y node i in n ( d SR SRC + + d DS - 2 - 2 х m ) ho hops t time me DST  Many r y routing ng s strategies c can b n be b built lt o over d different nt r routing ng options ns i in H n HD T D Tree R ab ab R wxyz yz y y a b x x ab ab xy xy xy xy ab ab abw ab bwx wx wxy wxy zab ab yz yza xyz yz abwx ab wx bwxy wxy wxyz yz yz yzab ab xyz yza wxyz yz Note: d SR SRC , , d DS DST = depth of SRC/DST node in HD tree = length of the SRC/DST code m = length of the max. match between SRC and DST code 25

  26. DS-RT 2011 . Tr Tree D2 D2H D2 D2D D H2D D H2 H2H H HR HR DR DROCR D2H D2 > = < = < < < D2D D2 D > > = > = < < DR DR H2D D > = < = < < < H2H H2 H > > = > = < < HR > > > > > = < DR DROCR HR + + DR DR > > > > > > = > : performs better < : performs worse =: equivalent HR: 2HP/2DP/2HC/2DC routing Tree: routing in the equivalent tree structure 26

Recommend


More recommend