presentation on multichannel nonlinear scattering for
play

Presentation on Multichannel Nonlinear Scattering for Nonintegrable - PowerPoint PPT Presentation

Presentation on Multichannel Nonlinear Scattering for Nonintegrable equations by A. Soffer and M. I. Weinstein Presenter : Chulkwang Kwak Facultad de Matem aticas Pontificia Universidad Cat olica de Chile 2017 Participating School, KAIST


  1. Presentation on Multichannel Nonlinear Scattering for Nonintegrable equations by A. Soffer and M. I. Weinstein Presenter : Chulkwang Kwak Facultad de Matem´ aticas Pontificia Universidad Cat´ olica de Chile 2017 Participating School, KAIST August 21–25, 2017 C. Kwak August 21–25, 2017 1 / 31

  2. Part II C. Kwak August 21–25, 2017 2 / 31

  3. Goal Theorem-Asymptotic stability Let Ω η = ( E ∗ , E ∗ + η ), where η is positive and sufficiently small. Then for all E 0 ∈ Ω η and γ 0 ∈ [0 , 2 π ), there exists a positive number ǫ = ǫ ( E 0 , η ) such that if Φ(0) = e iγ 0 ( ψ E 0 + φ 0 ) where � φ 0 � L 1 ( R 3 x ) + � φ 0 � H 1 ( R 3 x ) < ǫ then � t Φ( t ) = e − i 0 E ( s ) ds + iγ ( t ) ( ψ E ( t )+ φ ( t ) ) with ˙ γ ( t ) ∈ L 1 ( R t ) t →±∞ ( E ( t ) , γ ( t )) = ( E ± , γ ± )) E ( t ) , ˙ ( ⇒ ∃ lim C. Kwak August 21–25, 2017 3 / 31

  4. Goal Theorem A. - Asymptotic stability and φ ( t ) is purely dispersive in the sense that �� x � − σ φ ( t ) � L 2 ( R 3 ) = O ( � t � − 3 2 ) for σ > 2, and � φ ( t ) � L 4 ( R 3 ) = O ( � t � − 3 4 ) as | t | → ∞ . C. Kwak August 21–25, 2017 4 / 31

  5. Goal Asymptotic stability theorem is reduced to Proposition A Assume | E 0 − E ∗ | < η and � φ 0 � L 1 + � φ 0 � H 1 < ǫ, for sufficiently small η > 0 and ǫ = ǫ ( η ) > 0. Then, we have 3 2 �� x � − σ φ ( t ) � L 2 � � φ 0 � L 1 + � φ 0 � H 1 , sup � t � (1) t ∈ R 3 4 � φ ( t ) � L 4 � � φ 0 � L 1 + � φ 0 � H 1 sup � t � (2) t ∈ R and 3 ˙ 2 ( | ˙ sup � t � γ ( t ) | + | E ( t ) | ) � � φ 0 � L 1 + � φ 0 � H 1 (3) t ∈ R C. Kwak August 21–25, 2017 5 / 31

  6. Decay estimates Decay estimate Let K = − ∆ + V acting on L 2 ( R 3 ), and assume Hypotheses on V . Also, V satisfies (NR). Let P c ( K ) denote the projection onto the continuous spectral part of K . If 1 /p + 1 /q = 1, 2 ≤ q ≤ ∞ , then � e itK P c ( K ) ψ � L q ≤ C q | t | − (3 / 2 − 3 /q ) � ψ � L p . If ψ is more regular ( ψ ∈ H 1 ), then � e itK P c ( K ) ψ � L q ≤ C q � t � − (3 / 2 − 3 /q ) ( � ψ � L p + � ψ � H 1 ) . A simple consequence is the following local decay estimate Local decay estimate Under the same assumption as in the above theorem, let σ > 3 / 2 − 3 /q . Then �� x � − σ e itK P c ( K ) ψ � L 2 ≤ C q | t | − (3 / 2 − 3 /q ) � ψ � L p . C. Kwak August 21–25, 2017 6 / 31

  7. Introduction of quantities M j ( T ), j = 1 , 2 , 3 We introduce quantities M j ( T ), j = 1 , 2 , 3 corresponding to (1), (2) and (3). Let 0 < T < ∞ . Define 3 2 �� x � − σ φ ( t ) � L 2 , M 1 ( T ) = sup � t � | t |≤ T 3 4 � φ ( t ) � L 4 M 2 ( T ) = sup � t � | t |≤ T and M 3 ( T ) = sup � φ ( t ) � L 2 . | t |≤ T Once we have the uniform bound of M 1 ( T ) and M 2 ( T ) in T , by taking T → ∞ , we can prove (1) and (2). We note that M 3 ( T ) appears in the estimation of M 1 ( T ), and hence we will additionally control M 3 ( T ) by M 1 ( T ) and M 2 ( T ). C. Kwak August 21–25, 2017 7 / 31

  8. Bounds of M j ( T ) Lemma A - M 2 ( T ) bound Under the assumptions in Theorem A. and definitions of M 1 and M 2 , we have M 2 ( T ) ≤ C 2 ( � φ 0 � L 1 + � φ 0 � H 1 ) + C 2 ( ψ E , ∂ E ψ E )( M 1 ( T ) + M 2 ( T ) 2 + M 2 ( T ) 3 ) + C ′ 2 M 2 ( T ) 3 , where C 2 ( ψ E , ∂ E ψ E ) → 0 as E → E ∗ . Lemma B - M 1 ( T ) bound Under the assumptions in Theorem A. and definitions of M 1 , M 2 and M 3 , we have M 1 ( T ) ≤ C 1 ( � φ 0 � L 1 + � φ 0 � H 1 ) 1 ( M 2 ( T ) 2 + M 2 ( T ) 3 + M 3 ( T ) M 2 ( T ) 2 ) , + C ′ whenever 0 < | E − E ∗ | ≪ 1. C. Kwak August 21–25, 2017 8 / 31

  9. Bounds of M j ( T ) Lemma C - M 3 ( T ) bound Under the assumptions in Theorem A. and definitions of M 1 , M 2 and M 3 , we have M 3 ( T ) 2 ≤ C 3 ( ψ E , ∂ E ψ E )( M 1 ( T ) 2 + M 2 ( T ) 2 + M 2 ( T ) 4 ) + C ′ 3 M 2 ( T ) 4 , where C 3 ( ψ E , ∂ E ψ E ) → 0 as E → E ∗ . C. Kwak August 21–25, 2017 9 / 31

  10. Control of ˙ E and ˙ γ We first control | ˙ E | and | ˙ γ | . From E ( t ) = � ∂ E ψ E , ψ E 0 � − 1 Im � F 2 , ψ E 0 � ˙ and γ ( t ) = −� ψ E , ψ E 0 � − 1 Re � F 2 , ψ E 0 � , ˙ where F 2 = F 2 , lin + F 2 , nl F 2 , lin = (2 ψ 2 E − ψ 2 E 0 ) φ + ψ 2 E φ F 2 , nl = 2 ψ E | φ | 2 + ψ E φ 2 + | φ | 2 φ, by H¨ older inequality, we have | ˙ E | ≤ |� ∂ E ψ E , ψ E 0 �| − 1 |� F 2 , ψ E 0 �| ≤ |� ∂ E ψ E , ψ E 0 �| − 1 � �� x � σ (3 ψ 2 E + ψ 2 E 0 ) ψ E 0 � L 2 �� x � − σ φ � L 2 � + � 3 ψ E ψ E 0 � L 2 � φ � 2 L 4 + � ψ E 0 � L 4 � φ � 3 L 4 C. Kwak August 21–25, 2017 10 / 31

  11. Control of ˙ E and ˙ γ and γ | ≤ |� ψ E , ψ E 0 �| − 1 |� F 2 , ψ E 0 �| | ˙ ≤ |� ψ E , ψ E 0 �| − 1 � �� x � σ (3 ψ 2 E + ψ 2 E 0 ) ψ E 0 � L 2 �� x � − σ φ � L 2 � + � 3 ψ E ψ E 0 � L 2 � φ � 2 L 4 + � ψ E 0 � L 4 � φ � 3 . L 4 Using the definitions of M 1 ( T ) and M 2 ( T ), 2 ( M 1 ( T ) + M 2 ( T ) 2 + M 2 ( T ) 3 ) | ˙ E ( t ) | ≤ C E ( ψ E , ψ E 0 ) � t � − 3 and 2 ( M 1 ( T ) + M 2 ( T ) 2 + M 2 ( T ) 3 ) γ ( t ) | ≤ C γ ( ψ E , ψ E 0 ) � t � − 3 | ˙ C. Kwak August 21–25, 2017 11 / 31

  12. Proof of Proposition A We assume that Lemmas A, B and C hold true. We remove M 3 ( T ) in M 1 ( T ) ≤ C 1 ( � φ 0 � L 1 + � φ 0 � H 1 ) 1 ( M 2 ( T ) 2 + M 2 ( T ) 3 + M 3 ( T ) M 2 ( T ) 2 ) , + C ′ by using M 3 ( T ) 2 ≤ C 3 ( ψ E , ∂ E ψ E )( M 1 ( T ) 2 + M 2 ( T ) 2 + M 2 ( T ) 4 ) + C ′ 3 M 2 ( T ) 4 . Then we have 1 ( M 2 ( T ) 2 + M 2 ( T ) 4 ) M 1 ( T ) ≤ C 1 ( � φ 0 � L 1 + � φ 0 � H 1 ) + C ′ (4) for 0 < | E − E ∗ | ≪ 1. Substitution of (4) into M 2 ( T ) ≤ C 2 ( � φ 0 � L 3 + � φ 0 � H 1 ) 4 + C 2 ( ψ E , ∂ E ψ E )( M 1 ( T ) + M 2 ( T ) 2 + M 2 ( T ) 3 ) + C ′ 2 M 2 ( T ) 3 , yields M 2 ( T ) ≤ C 1 ( � φ 0 � L 1 + � φ 0 � H 1 ) + C 2 M 2 ( T ) 2 + C 3 M 2 ( T ) 3 + C 4 M 2 ( T ) 4 . C. Kwak August 21–25, 2017 12 / 31

  13. Proof of Proposition A This can be rewritten as M 2 ( T ) f ( M 2 ( T )) ≤ L, where f ( x ) = 1 − C 2 x − C 3 x 2 − C 4 x 3 and L = C 1 ( � φ 0 � L 1 + � φ 0 � H 1 ). For positive constants C 2 , C 3 , C 4 , we can know that there exists x 0 > 0 such that x 0 f ( x 0 ) = sup xf ( x ) x> 0 and xf ( x ) is increasing on (0 , x 0 ). Let | E 0 − E ∗ | = 2 η , where η > 0 will be chosen sufficiently small such that 1 C E ( ψ E , ψ E 0 ) , C γ ( ψ E , ψ E 0 ) ≤ η 2 and ηf ( η ) ≤ x 0 f ( x 0 ) . 2 We choose C 1 ǫ ≤ ηf ( η ). C. Kwak August 21–25, 2017 13 / 31

  14. Proof of Proposition A If � φ 0 � L 1 ( R 3 x ) + � φ 0 � H 1 ( R 3 x ) ≤ ǫ, we know L ≤ ηf ( η ) ≤ x 0 f ( x 0 ) 2 and M 2 (0) = � φ 0 � L 4 < ǫ ≤ η. By the continuity of M 2 ( T ), we have M 2 ( T ) ≤ η and therefore M 1 ( T ) ≤ Cη for some C > 0. Hence, we have from 2 ( M 1 ( T ) + M 2 ( T ) 2 + M 2 ( T ) 3 ) | ˙ E ( t ) | ≤ C E ( ψ E , ψ E 0 ) � t � − 3 and 2 ( M 1 ( T ) + M 2 ( T ) 2 + M 2 ( T ) 3 ) γ ( t ) | ≤ C γ ( ψ E , ψ E 0 ) � t � − 3 | ˙ that | ˙ 3 2 � t � − 3 E | ≤ C E η (5) 2 and 3 2 � t � − 3 2 . | ˙ γ | ≤ C γ η (6) C. Kwak August 21–25, 2017 14 / 31

  15. Proof of Proposition A Integration of (5) and (6) yields � T | ˙ γ ( t ) | dt ≤ � 3 2 , E ( t ) | + | ˙ Cη (7) − T where � C is independent of T and η . By choosing η sufficiently small, (7) ensures that � t | ˙ 3 E ( s ) | ds ≤ � 2 < η, | E ( t ) − E 0 | ≤ Cη | t | ≤ T, 0 and thus sup { t : | E ( t ) − E 0 | < η } = ∞ . Taking T → ∞ , we have M 1 ( ∞ ) ≤ η and M 2 ( ∞ ) ≤ Cη. C. Kwak August 21–25, 2017 15 / 31

  16. Proof of Lemma A We first consider � φ � L 4 . Recall � t φ ( t ) = U ( t, 0) P c ( H ( E 0 )) φ 0 − i U ( t, s ) P c ( H ( E 0 )) F ( s ) ds, 0 where F = F 1 + F 2 , γψ E − i ˙ F 1 = ˙ E∂ E ψ E , F 2 = F 2 , lin + F 2 , nl , F 2 , lin = (2 ψ 2 E − ψ 2 E 0 ) φ + ψ 2 E φ, F 2 , nl = 2 ψ E | φ | 2 + ψ E φ 2 + | φ | 2 φ. We use � e itK P c ( K ) ψ � L q ≤ C q � t � − (3 / 2 − 3 /q ) ( � ψ � L p + � ψ � H 1 ) for the linear part and � e itK P c ( K ) ψ � L q ≤ C q | t | − (3 / 2 − 3 /q ) � ψ � L p for the nonlinear part to obtain that C. Kwak August 21–25, 2017 16 / 31

  17. Proof of Lemma A � t � φ ( t ) � L 4 ≤ � U ( t, 0) φ 0 � L 4 + � U ( t, s ) P c ( H ( E 0 )) F � L 4 ds 0 ≤ C � t � − 3 4 ( � φ 0 � L 3 + � φ 0 � H 1 ) 4 � t � | t − s | − 3 3 + | ˙ + C ′ | ˙ γ ( t ) |� ψ E � L E ( t ) |� ∂ E ψ E � L 4 4 4 3 (8) 0 � + � (3 ψ 2 E + ψ 2 3 + � 3 ψ E | φ | 2 � L 3 + �| φ | 2 φ � L E 0 ) φ � L ds 4 4 4 3 ≤ C 1 � t � − 3 4 ( � φ 0 � L 1 + � φ 0 � H 1 ) � t | t − s | − 3 4 [ I + II + III + IV + V ] ds. + C 2 0 C. Kwak August 21–25, 2017 17 / 31

Recommend


More recommend