preliminaries kolmogorov complexity
play

preliminaries: Kolmogorov complexity U(p) = T i (p) K(x) = min p { p - PowerPoint PPT Presentation

A safe & computable approximation to Kolmogorov complexity Peter Bloem, Francisco Mota, Steven de Rooij, Lus Antunes & Pieter Adriaans preliminaries: Kolmogorov complexity U(p) = T i (p) K(x) = min p { p : U(p) = x }


  1. A safe & computable approximation to Kolmogorov complexity Peter Bloem, Francisco Mota, Steven de Rooij, Luìs Antunes & Pieter Adriaans

  2. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x }

  3. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x } U is a formalisation of the notion of a ӫ description K is invariant to the choice of U ӫ (up to a constant)

  4. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x } U is a formalisation of the notion of a ӫ description K is invariant to the choice of U ӫ (up to a constant)

  5. preliminaries: Kolmogorov complexity U(ıp) = T i (p) K(x) = min p { p : U(p) = x } U is a formalisation of the notion of a ӫ description K is invariant to the choice of U ӫ (up to a constant)

  6. motivation “Kolmogorov is not computable, it’s only of theoretical use” No, approximations are usually correct

  7. preliminaries: Probabilities & codes L(x) : (prefjx) code length function ӫ p(x) : probability (semi) measure ӫ - log p(x) = L(x)

  8. step 1: computable probabilities From TMs to probabilities: T(p) = x p T (x) = Σ p:T(p) = x 2 -|p| m(x) = p U (x) equivalent to the lower semicomputable semimeasures

  9. step 2: model classes A model class C is an effectively enumerable subset of all Turing machines. U C (ıp) = T i (p) K C (x) = min p { p : U C (p) = x } m C (x) = Σ p:U C (p) = x 2 -|p|

  10. step 3: safe approximation L(x) : approximating ӫ code-length function L(x) is safe against p when ӫ p ( L(x) - K(x) ≥ k ) ≤ cb -k for some c and b > 1

  11. Is K C safe against p∈C ?

  12. no.

  13. not x x x x x x x x x

  14. - log m C (x) not x K C (x) x x x x x x x x

  15. Is - log m C safe against p∈C ?

  16. yes.

  17. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  18. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  19. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  20. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  21. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  22. -log m C is safe against m C m C � − log m C ( x ) − K ( x ) � k � = m C � m C ( x ) � 2 − k 2 − K ( x ) � � x : m C ( x ) � 2 − k 2 − K ( x ) m C ( x ) = � 2 − k 2 − K ( x ) � 2 − K ( x ) � 2 − k = 2 − k �

  23. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  24. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  25. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  26. -log m C is safe against members of C � m C ( · ) = c q p q ( · ) � c q p q ( · ) q ∈ C − log m C ( x ) − K ( x ) � k � � c q p q � m C � − log m C ( x ) − K ( x ) � k � � 2 − k

  27. can we compute m C ? We can if it’s upper and lower ӫ semicomputable lower: dovetail all programs for U C ӫ upper: dovetail until ӫ (1-s)/s x ≤ 2 c − 1 If C is complete, this algorithm is com- ӫ putable

  28. κ C (x) = κ C (x) = dominates 2-safe -log m(x) -log m C (x) -log m C (x) bounds dominates bounds bounds dominates unsafe K C (x) K(x) dominates

  29. What does this buy us? bridge between the practical and the ӫ platonic Bayesian ↔ MDL ↔ Algorithmic ӫ corollary: K t ӫ Additional results: ID, NID ӫ

  30. Questions?

Recommend


More recommend