MRM: Currents Equations Constant u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) Resistanc e H ( u , v ) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ) ws / si H ( u , w ) u / o ( u ) H ( u , w ) / so ( u ) J so ( u )
MRM: Currents Equations u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ) ( u v )( u u u ) v / fi J fi ( u , v ) Piecewise Nonlinear J si ( u , w , s ) H ( u , w ) ws / si H ( u , w ) u / o ( u ) H ( u , w ) / so ( u ) J so ( u )
MRM: Currents Equations u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ) ws / si Piecewise H ( u , w ) u / o ( u ) H ( u , w ) / so ( u ) J so ( u ) Bilinear
MRM: Currents Equations u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ) ws / si H ( u , w ) u / o ( u ) H ( u , w ) / so ( u ) J so ( u ) Piecewise Sigmoidal Resistanc Resistanc e e
MRM: Currents Equations u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ) ws / si H ( u , w ) u / o ( u ) H ( u , w ) / so ( u ) J so ( u ) Piecewise Nonlinear
MRM: Gates ODEs u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ,0,1) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ,0,1) ws / si H ( u , w ,0,1) u / o ( u ) H ( u , w ,0,1) / so ( u ) J so ( u ) H ( u , v ) ( v v ) / v ( u ) H ( u , v ) v / v v ( u , v ) w ( u , w ) H ( u , w )( w w ) / w ( u ) H ( u , w ) w / w & ( S ( u , u s , k s ) s ) / s ( u ) & s ( u , s ) H ( u v )( u v )( u u u ) v / fi J fi
MRM: Gates ODEs u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ,0,1) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ,0,1) ws / si Piecewise H ( u , w ,0,1) u / o ( u ) H ( u , w ,0,1) / so ( u ) J so ( u ) Resistance H ( u , v ) ( v v ) / v ( u ) H ( u , v ) v / v v ( u , v ) w ( u , w ) H ( u , w )( w w ) / w ( u ) H ( u , w ) w / w & ( S ( u , u s , k s ) s ) / s ( u ) & s ( u , s ) H ( u v )( u v )( u u u ) v / fi J fi Piecewise Resistance
MRM: Gates ODEs u ( u , v , w , s ) ( D u ) ( J fi ( u , v ) J si ( u , w , s ) J so ( u )) H ( u , v ,0,1) ( u v )( u u u ) v / fi J fi ( u , v ) J si ( u , w , s ) H ( u , w ,0,1) ws / si H ( u , w ,0,1) u / o ( u ) H ( u , w ,0,1) / so ( u ) J so ( u ) H ( u , v ) ( v v ) / v ( u ) H ( u , v ) v / v v ( u , v ) w ( u , w ) H ( u , w )( w w ) / w ( u ) H ( u , w ) w / w & ( S ( u , u s , k s ) s ) / s ( u ) & s ( u , s ) Sigmoidal Resistance H ( u v )( u v )( u u u ) v / fi J fi Sigmoid
MRM: Voltage-Controlled Resistances/SSV H ( u , o ) v 2 v ( u ) H ( u , o ) v 1 Piecewis e s ( u ) H ( u , w ) s 1 H ( u , w ) s 2 Constant o ( u ) H ( u , o ) o 1 H ( u , o ) o 2 w ( u )
MRM: Voltage-Controlled Resistances/SSV H ( u , o ) v 2 v ( u ) H ( u , o ) v 1 s ( u ) H ( u , w ) s 1 H ( u , w ) s 2 o ( u ) H ( u , o ) o 1 H ( u , o ) o 2 w ( u ) w 1 ) S ( u , u s , k w Sigmoidal w ( u ) w 1 ( w 2 ) so ( u ) so 1 ( so 2 so 1 ) S ( u , u s , k so ) w ( u )
MRM: Voltage-Controlled Resistances/SSV H ( u , o ) v 2 v ( u ) H ( u , o ) v 1 s ( u ) H ( u , w ) s 1 H ( u , w ) s 2 o ( u ) H ( u , o ) o 1 H ( u , o ) o 2 w ( u ) w 1 ) S ( u , u s , k w w ( u ) w 1 ( w 2 ) so ( u ) so 1 ( so 2 so 1 ) S ( u , u s , k so ) Piecewis Piecewise w ( u ) e v ( u ) H ( u , o ) Linear Constant w ( u ) H ( u , o ) (1 u / w ) H ( u , o ) w * H ( u , o ) o 1 H ( u , o ) o 2 so ( u )
MRM: Scaled Steps and Sigmoids , v 2 ) v ( u ) H ( u , o , v 1 Piecewis e s ( u ) H ( u , w , s 1 , s 2 ) Constant o ( u ) H ( u , o , o 1 , o 2 ) w ( u )
MRM: Scaled Steps and Sigmoids , v 2 ) v ( u ) H ( u , o , v 1 s ( u ) H ( u , w , s 1 , s 2 ) o ( u ) H ( u , o , o 1 , o 2 ) w ( u ) , w 2 ) w ( u ) S ( u , u s , k w , w 1 Sigmoidal so ( u ) S ( u , u s , k so , so 1 , so 2 ) w ( u )
Minimal Resistance Model (MRM) u v u v 0.3 u w 0. 13 u w u o 0.006 u o
Minimal Resistance Model (MRM) u v u v 0.3 0 u o u w 0. 13 u w u ( D u ) u / o 1 & u o 0.006 u o v (1 v ) / v 1 & w (1 u / w w ) / w & ( u ) s ( S ( u , u s , k s ) s ) / s 1 &
Minimal Resistance Model (MRM) o u w u ( D u ) u / o 2 & v v / v 2 & * w ) / w w ( w & ( u ) u v u v 0.3 0 u o s ( S ( u , u s , k s ) s ) / s 1 & u w 0. 13 u w u ( D u ) u / o 1 & u o 0.006 u o v (1 v ) / v 1 & w (1 u / w w ) / w & ( u ) s ( S ( u , u s , k s ) s ) / s 1 &
Minimal Resistance Model (MRM) w u v u ( D u ) ws / si 1/ so ( u ) & o u w v v / v 2 & u ( D u ) u / o 2 & w w / w & v v / v 2 s ( S ( u , u s , k s ) s ) / s 2 & & * w ) / w w ( w & ( u ) u v u v 0.3 0 u o s ( S ( u , u s , k s ) s ) / s 1 & u w 0. 13 u w u ( D u ) u / o 1 & u o 0.006 u o v (1 v ) / v 1 & w (1 u / w w ) / w & ( u ) s ( S ( u , u s , k s ) s ) / s 1 &
Minimal Resistance Model (MRM) v u < u s u ( D u ) ( u v )( u u u ) v / fi ws / fi 1/ so ( u ) & v v / v & w w / w & s ( S ( u , u s , k s ) s ) / , s 2 & w u v u ( D u ) ws / si 1/ so ( u ) & o u w v v / v 2 & u ( D u ) u / o 2 & w w / w & v v / v 2 s ( S ( u , u s , k s ) s ) / s 2 & & * w ) / w w ( w & ( u ) u v u v 0.3 0 u o s ( S ( u , u s , k s ) s ) / s 1 & u w 0. 13 u w u ( D u ) u / o 1 & u o 0.006 u o v (1 v ) / v 1 & w (1 u / w w ) / w & ( u ) s ( S ( u , u s , k s ) s ) / s 1 &
Sigmoid Closure Property Theorem: For ab > 0, scaled sigmoids are closed under the reciprocal operation: ln( a b ) 2 k , 1 b , 1 S ( u , k , , a , b ) 1 S ( u , k , a )
Sigmoid Closure Property ln( a b ) 2 k , 1 b , 1 S ( u , k , , a , b ) 1 S ( u , k , a ) S ( u , k , , a , b ) Proof: b b a S ( u , k , , a , b ) 1 ( a b-a ) 1 1 e 2 k u a
Sigmoid Reciprocal Closure ln( a b ) 2 k , 1 b , 1 S ( u , k , , a , b ) 1 S ( u , k , a ) S ( u , k , , a , b ) 1 1 Proof: a 1 a 1 S ( u , k , , a , b ) 1 1 a 1 1 b a 2 k ( u ( ln a ln b b )) 1 e 2 k 1 b ln( a / b ) / 2 k
From Resistances to Conductances Removing Divisions using Sigmoid Reciprocal: 1/ w S ( u , k w S ( u , k w , w 2 ) , u ' w , w 1 1 , w 2 1 ) w , u w , w 1 g w v u s u u u w u ' w u 0.03 0.04 0.9087 0.3 1.55
From Resistances to Conductances Removing Divisions using Sigmoid Reciprocal: 1/ w S ( u , k w S ( u , k w , w 2 ) , u ' w , w 1 1 , w 2 1 ) w , u w , w 1 g w g so 1/ s 0 S ( u , k so , u ' so , 1 so 1 , 1 so S ( u , k so , u so , so 1 , so 2 ) so 2 ) u so v u s u u u ' so u w u ' w u 0.65 0.03 0.04 0.9087 1.48 0.3 1.55
From Resistances to Conductances 1/ w S ( u , k w S ( u , k w , w 2 ) , u ' w , w 1 1 , w 2 1 ) w , u w , w 1 g w g so 1/ s 0 S ( u , k so , u ' so , 1 so 1 , 1 so S ( u , k so , u so , so 1 , so 2 ) so 2 ) Removing Divisions using Step Reciprocal: 1/ v H ( u , o , v 1 H ( u , o , v 1 , v 2 ) 1 , v 2 1 ) v g v g o 1/ o H ( u , o , 1 o 1 , 1 o H ( u , o , o 1 , o 2 ) o 2 ) * ) v H ( u , o ,0,1) w H ( u , o ,0,1) (1 ug w ) H ( u , o ,0,w u so v o u s u u u ' so u w u ' w u 0.006 0.65 0.03 0.04 0.9087 1.48 0.3 1.55
From Resistances to Conductances 1/ w S ( u , k w S ( u , k w , w 2 ) , u ' w , w 1 1 , w 2 1 ) w , u w , w 1 g w g so 1/ s 0 S ( u , k so , u ' so , 1 so 1 , 1 so S ( u , k so , u so , so 1 , so 2 ) so 2 ) Removing Divisions using Step Reciprocal: 1/ v H ( u , o , v 1 H ( u , o , v 1 , v 2 ) 1 , v 2 1 ) v g v g o 1/ o H ( u , o , 1 o 1 , 1 o H ( u , o , o 1 , o 2 ) o 2 ) s H ( u , w , s 1 , s 2 ) g s 1/ s H ( u , w , s 1 1 , s 2 1 ) * ) v H ( u , o ,0,1) w H ( u , o ,0,1) (1 ug w ) H ( u , o ,0,w u so v o w u s u u u ' so u w u ' w u 0.006 0.13 0.65 0.03 0.04 0.9087 1.48 0.3 1.55
Minimal Conductance Model (MCM) v u < u s u ( D u ) ( u v )( u u u ) v g fi ws g si g so ( u ) & v v g v & w w g w & s ( S ( u , u s , k s ,0,1) s ) g s 2 & w u v u ( D u ) ws g si g so ( u ) & o u w v v g v 2 & u ( D u ) u g o 2 & w w g w & v v g v 2 s ( S ( u , u s , k s ,0,1) s ) g s 2 & & * w ) g w ( u ) w ( w & u v u v 0.3 0 u o s ( S ( u , u s , k s ,0,1) s ) g s 1 & u w 0. 13 u w u ( D u ) u g o 1 & v (1 v ) g v 1 u o 0.006 u o & ( u ) w (1 u g w w ) g w & s ( S ( u , u s , k s ,0,1) s ) g s 1 &
Gene Regulatory Networks (GRN) GRN canonical sigmoidal form: n j m i S ( u k , k k u i , k , a k , b k ) b i u i a ij j 1 k 1
Gene Regulatory Networks (GRN) GRN canonical sigmoidal form: n j m i S ( u k , k k u i , k , a k , b k ) b i u i a ij j 1 k 1 where: a ij : are activation / inhibition constants b i : are decay constants S (..) : are on / off sigmoidal functions
Gene Regulatory Networks (GRN) GRN canonical sigmoidal form: n j m i S ( u k , k k u i , k , a k , b k ) b i u i a ij j 1 k 1 where: a ij : are activation / inhibition constants b i : are decay constants S (..) : are on / off sigmoidal functions Note: steps and ramps are sigmoid approximations
Optimal Polygonal Approximation Given: One nonlinear curve and desired # segments Find: Optimal polygonal approximation
Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the blue curve with 3 segments ?
Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the blue curve with 3 segments ?
Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the blue curve with 3 segments ?
Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the blue curve with 3 segments ?
Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the blue curve with 3 segments ?
Optimal Polygonal Approximation Dynamic Programming Algorithm • Complexity: O(P 2 ) • P: # points of the curve M. Salotti, Pattern Recognition Letters 22 (2001), Pag 215-221
Optimal Polygonal Approximation Dynamic Programming Algorithm • Complexity: O(P 2 ) • P: # points of the curve M. Salotti, Pattern Recognition Letters 22 (2001), Pag 215-221
Optimal Polygonal Approximation Dynamic Programming Algorithm • Complexity: O(P 2 ) • P: # points of the curve M. Salotti, Pattern Recognition Letters 22 (2001), Pag 215-221
Optimal Polygonal Approximation Dynamic Programming Algorithm • Complexity: O(P 2 ) • P: # points of the curve M. Salotti, Pattern Recognition Letters 22 (2001), Pag 215-221
Optimal Polygonal Approximation Dynamic Programming Algorithm • Complexity: O(P 2 ) • P: # points of the curve M. Salotti, Pattern Recognition Letters 22 (2001), Pag 215-221
Globally-Optimal Polygonal Approximation Given: Set of nonlinear curves and desired # of segments Find: Globally optimal polygonal approximation
Globally-Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the curves below with 5 segments ?
Globally-Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the curves below with 5 segments ? Combining the two we obtain 8 segments and not 5 segments
Globally-Optimal Polygonal Approximation Example: What is the optimal polygonal approxima- tion of the curves below with 5 segments ? Solution: modify the OPAA to minimize the maximum error of a set of curves simultaneously.
Deriving the Piecewise Multi-Affine Model ( v u < u u ) u e ( u v )( u u u ) v g fi ws g si g so ( u ) & v v g v & w w g w & s S ( u , k s , u s ,0,1) g s 2 s g s 2 & w u v u v u e ws g si g so ( u ) & v v g v 2 & u v w w g w & s S ( u , k s , u s ,0,1) g s 2 s g s 2 & o u w u w u e u g o 2 & v v g v 2 & u w * w ) g w ( u ) w ( w & s S ( u , k s , u s ) g s 1 s g s 1 & 0 u o u o u e u g o 1 & v (1 v ) g v 1 & u o w (1 u g w w ) g w ( u ) & s S ( u , k s , u s ) g s 1 s g s 1 &
Deriving the Piecewise Multi-Affine Model ( v u < u u ) u e ( u v )( u u u ) v g fi ws g si g so ( u ) & v v g v & w w g w & s S ( u , k s , u s ,0,1) g s 2 s g s 2 & w u v u v u e ws g si g so ( u ) & v v g v 2 & u v w w g w & s S ( u , k s , u s ,0,1) g s 2 s g s 2 & o u w u w u e u g o 2 & v v g v 2 & u w * w ) g w ( u ) w ( w & s S ( u , k s , u s ) g s 1 s g s 1 & 0 u o u o u e u g o 1 & v (1 v ) g v 1 & u o w (1 u g w w ) g w ( u ) & s S ( u , k s , u s ) g s 1 s g s 1 &
Deriving the Piecewise Multi-Affine Model ( v u < u u ) u e ( u v )( u u u ) v g fi ws g si g so ( u ) & v v g v & w w g w & s S ( u , k s , u s ,0,1) g s 2 s g s 2 & w u v u v u e ws g si g so ( u ) & v v g v 2 & u v w w g w & s S ( u , k s , u s ,0,1) g s 2 s g s 2 & o u w u w u e u g o 2 & v v g v 2 & u w * w ) g w ( u ) w ( w & s S ( u , k s , u s ) g s 1 s g s 1 & 0 u o u o u e u g o 1 & v (1 v ) g v 1 & u o w (1 u g w w ) g w ( u ) & s S ( u , k s , u s ) g s 1 s g s 1 &
Deriving the Piecewise Multi-Affine Model ( v u < u u ) u e ( u v )( u u u ) v g fi ws g si g so ( u ) & v v g v & w w g w & s S ( u , k s , u s ) g s 2 s g s 2 & w u v u v u e ws g si g so ( u ) & v v g v 2 & u v w w g w & s S ( u , k s , u s ) g s 2 s g s 2 & o u w u w u e u g o 2 & v v g v 2 & u w * w ) g w ( u ) w ( w & s S ( u , k s , u s ) g s 1 s g s 1 & 0 u o u o u e u g o 1 & v (1 v ) g v 1 & u o w (1 u g w w ) g w ( u ) & s S ( u , k s , u s ) g s 1 s g s 1 &
Deriving the Piecewise Multi-Affine Model ( v u < u u ) u e ( u v )( u u u ) v g fi ws g si g so ( u ) & v v g v & w w g w & s S ( u , k s , u s ) g s 2 s g s 2 & w u v u v u e ws g si g so ( u ) & v v g v 2 & u v w w g w & s S ( u , k s , u s ) g s 2 s g s 2 & o u w u w u e u g o 2 & v v g v 2 & u w * w ) g w ( u ) w ( w & s S ( u , k s , u s ) g s 1 s g s 1 & 0 u o u o u e u g o 1 & v (1 v ) g v 1 & u o w (1 u g w w ) g w ( u ) & s S ( u , k s , u s ) g s 1 s g s 1 &
Deriving the Piecewise Multi-Affine Model 12 v < u u u 26 25 25 u e v g fi ws g si & R ( u , i , i 1 , u fi i , u fi i 1 ) R ( u , i , i 1 , u so i , u so i 1 ) g so i 12 i 12 v v g v & w w g w & 25 s ( s ) g s 2 & R ( u , i , i 1 , u s i , u s i 1 ) i 12 8 w u v 12 11 u e ws g si & R ( u , i , i 1 , u so i , u so i 1 ) g so u v i 8 v v g v 2 & u v w w g w & 11 s ( s ) g s 2 & R ( u , i , i 1 , u s i , u s i 1 ) i 8 2 o u w 8 u e u g o 2 & u w v v g v 2 & * w ) u w 7 w ( w & R ( u , i , i 1 , u w i , u w i 1 ) g w b i 2 7 s ( s ) g s 1 & R ( u , i , i 1 , u s i , u s i 1 ) i 2 0 0 u o 2 u o u e u g o 1 & v (1 v ) g v 1 & u o , u w i 1 ) , u w i 1 )) g w a 1 w ( wR ( u , i , i 1 , u w i & ( R ( u , i , i 1 , u w i i 0 1 s ( s ) g s 1 & R ( u , i , i 1 , u s i , u s i 1 ) i 0
2D Comparison
Analysis Problem • Find parameter ranges reproducing non-excitability: – Restated as an LTL formula: G ( u v )
Analysis Problem G ( u v ) • Initial region: u [0, 1 ] s [0,0.01] v [0.95,1] w [0.95,1]
Analysis Problem G ( u v ) u [0, 1 ] s [0,0.01] v [0.95,1] w [0.95,1] • Uncertain parameter ranges: g o 1 [1,180] g o 2 [0,10] g si [0.1,100] g so [0.9,50]
Analysis Problem G ( u v ) u [0, 1 ] s [0,0.01] v [0.95,1] w [0.95,1] g o 1 [1,180] g o 2 [0,10] g si [0.1,100] g so [0.9,50] e 1 • Stimulus:
State Space Partition v 1.00 0.95 u 0.00 0 1 2 3 7 8 9 11 12 13 25 26 • Hyperrectangles: 4 dimensional (uv-projection) – Arrows: indicate the vector field
Embedding Transition System T X (p) v 1.00 0.95 x ' x u 0.00 0 1 2 3 7 8 9 11 12 13 25 26 T X ( p ) x ' iff there is a solution and time such that: x ( 0 ) x , ( ) x ' t [ 0 , ]. ( t ) rect ( x ) rect ( x ') rect ( x ) is adjacent to rect ( x ')
The Discrete Abstraction T R (p) v 1.00 0.95 u 0.00 0 1 2 3 7 8 9 11 12 13 25 26 x : R ( p ) x ' iff rect ( x ) rect ( x ') T R ( p ) is the quotiont of T X ( p ) with respect to : R ( p )
The Discrete Abstraction T R (p) v 1.00 0.95 u 0.00 0 1 2 3 7 8 9 11 12 13 25 26 x : R ( p ) x ' iff rect ( x ) rect ( x ') T R ( p ) is the quotiont of T X ( p ) with respect to : R ( p ) Theorem: p . T X ( p ) T R ( p )
Recommend
More recommend