precision bioremediation a new frontier for the treatment
play

Precision Bioremediation: A New Frontier for the Treatment of - PowerPoint PPT Presentation

Precision Bioremediation: A New Frontier for the Treatment of Environmental Pollutants Claudia Gunsch October 3, 2019 Penn Live Delta Environmental >4,700 WASTE SITES IN THE US 2 Kuwait photos National Geographic Nearly 53 million


  1. Precision Bioremediation: A New Frontier for the Treatment of Environmental Pollutants Claudia Gunsch October 3, 2019

  2. Penn Live Delta Environmental >4,700 WASTE SITES IN THE US 2 Kuwait photos National Geographic

  3. Nearly 53 million Americans lives within three miles of a major hazardous waste site (EPA, 2014). 3

  4. Remediation Technologies • Pump and Treat • Soil Vapor Extraction • Excavation • Capping • Vitrification • … 4

  5. In Situ Bioremediation • More sustainable • Less intrusive • Cost effective Challenges • Slow degradation • Absence of degradation 5

  6. In situ bioremediation can be accelerated by bioaugmentation or biostimulation Biostimulation http://www.ecocycle.co.jp Bioaugmentation http://www.ecocycle.co.jp 6

  7. Combined biostimulation & bioaugmentation may result in better biodegradation Adapted from http://www.ecocycle.co.jp 7

  8. Combined biostimulation & bioaugmentation may result in better biodegradation Adapted from http://www.ecocycle.co.jp BUT amended microbes may not survive in the new environment 8

  9. Precision Bioremediation Approach #1 Genes for contaminant degradation are often found on catabolic plasmids! Plasmid conjugation is a form of horizontal gene transfer 9

  10. Genetic bioaugmentation using plasmid conjugation as a means for effective bioremediation Genetic bioaugmentation = Increasing the amount of microbes capable of degrading certain contaminants by promoting HGT occurrence in situ Donor cell Non-toxic products Contaminant Transconjugant Advantage: Requires less foreign microbe addition Donor cells do not need to survive for bioremediation 10

  11. Pseudomonas putida BBC443 harboring a TOL plasmid tagged with GFP and kanamycin resistance used as donors rp No Model fluorescence Fluorescence Contaminant: signal signal Toluene Parental Strain Recipient Strain ( E. coli DH5 a ) ( Pseudomonas putida BBC443 ) Christensen et al., 1998 Bacterial Chromosome TOL plasmid rp 11 Repressor Protein

  12. Transconjugants can be verified through epifluorescence microscopy and flow cytometry Escherichia coli transconjugant cells Mixture of P. putida cells and E. coli transconjugants 12

  13. E. coli transconjugants harboring the TOL plasmid could not degrade toluene Pei and Gunsch, 2008 13

  14. E. coli transconjugants harboring the TOL plasmid could not degrade toluene Conjugal transfer ≠ Functional phenotype? Pei and Gunsch, 2008 14

  15. High plasmid functionality and transfer rates are necessary in genetic bioaugmentation Functional Donor phenotype of cell transferred catabolic genes Non-toxic High conjugal products transfer rates of catabolic Contaminant Tran sconjugant plasmid 15

  16. Addition of alternative C source increased TOL plasmid activity in E. coli transconjugants (* indicates statistical significance compared to 0 g/L glucose) 16 (Ikuma and Gunsch, 2010)

  17. E. coli transconjugants may not have functional phenotypes due to GC content differences E. coli = 50% GC TOL plasmid = 59% GC ~10% difference P. putida = 60% GC 17

  18. E. coli transconjugants may not have functional phenotypes due to GC content differences E. coli = 50% GC TOL plasmid = 59% GC ~10% difference P. putida = 60% GC Presence of additional carbon source can overcome phenotype functionality issues. 18

  19. Recipient genomic GC content may play an important role in TOL plasmid functionality y = 0.94x + 0.72 (n = 43; R 2 = 0.940) (Martiny and Field, 2005) 19

  20. Recipient genomic GC content may play an important role in TOL plasmid functionality y = 0.94x + 0.72 (n = 43; R 2 = 0.940) (Martiny and Field, 2005) Will strains with genomic GC contents similar to that of the TOL plasmid (59%) have functional phenotypes? 20

  21. Transconjugants obtained and tested belong to the g -Proteobacteria family P. putida (60% G+C) Pseudomonadaceae P. putida BBC443 (60% G+C) family P. fluorescens (59% G+C) Serratia marcescens (59% G+C) E. coli (50% G+C) Shigella dysenteriae (56% G+C) Enterobacteriaceae Escherichia sp. (50%G+C) family Enterobacter cloacae (54% G+C) Pantoea agglomerans (52% G+C) 21

  22. Host cell G+C content and phylogenetics may limit TOL plasmid activities in transconjugants Phylogenetic distance from donor 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 -11 3.5x10 Specific toluene degradation rate (mg toluene/cell/h) Genomic G + C content Phylogenetic relatedness -11 3.0x10 -11 2.5x10 -11 2.0x10 -11 1.5x10 -11 1.0x10 -12 5.0x10 0.0 50 52 54 56 58 60 (Ikuma and Gunsch, Genomic G + C content (%) Appl Microbiol and 22 Biotech , 2013)

  23. Host cell G+C content and phylogenetics may limit TOL plasmid activities in transconjugants Phylogenetic distance from donor 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 -11 3.5x10 Specific toluene degradation rate (mg toluene/cell/h) Genomic G + C content Phylogenetic relatedness -11 3.0x10 -11 2.5x10 -11 2.0x10 -11 1.5x10 -11 1.0x10 -12 5.0x10 Enterobacteria transconjugants 0.0 50 52 54 56 58 60 (Ikuma and Gunsch, Genomic G + C content (%) Appl Microbiol and 23 Biotech , 2013)

  24. Soil column experiments Flow rate: 33 mL/h HRT: 30 h Toluene in the influent Column (10 cm diameter, 30 cm height) Mixing chamber Influent Contaminant medium addition 24

  25. Soil columns tested various scenarios of genetic bioaugmentation Column conditions 1A/B: Autoclaved soil + 4 recipient strains Escherichia coli (50% G+C) 2A/B: Autoclaved soil + Enterobacter 4 recipient strains + cloacae (54% continuous glucose input G+C) Serratia marcescens (59% G+C) Pseudomonas 3A/B: Autoclaved soil + fluorescens (59% 4 recipient strains + G+C) P. putida BBC443 pulse glucose input (plasmid donor) (60% G+C) 4A/B: Non-sterile soil + pulse glucose input 25

  26. Long-term fate of TOL plasmid genetic bioaugmentation was studied over 60 days Presence of selective Absence of selective pressure: pressure: 28 days 32 days (Ikuma and Gunsch, Total column operation: 60 days Environmental Chemistry 26 Letters , 2013)

  27. Lessons learned • It is possible to induce horizontal gene transfer of catabolic plasmids • Functional phenotype requires luck or knowledge of host phylogenetic genetics and phylogenetic relatedness to catabolic plasmid 27

  28. Extrapolating to the Real World 1322 National Priority Superfund Sites EPA, 2014 28

  29. Pyrene Naphthalene Anthracene Adverse Health Effects 29

  30. King’s Creek (reference) Republic Creosoting Republic Creosoting, Elizabeth River Norfolk, VA 30

  31. Holcomb Creosote *

  32. Project Goal: Integrated Microbial Metabolism 32 32

  33. Precision Bioremediation Approach #2: Next-Generation Sequencing • Universal amplicon sequencing – 18S/LSU (fungi) – ITS (fungi) – 16S (bacteria) • Helps identify potential target organisms for bioremediation Republic Creosoting site. 33 33

  34. Amplicon Based Metagenomic Community Analysis 34 http://tucf-genomics.tufts.edu/images/illumina-large.gif?1378237298

  35. Soils with High [PAHs] Host Ascomycota Phylum Taxonomic Increasing [PAHs] Level Basidiomycota Ascomycota Chytridiomycota Glomeromycota Neocallimastigomycota Cryptomycota Zygomycota Other Sites with Creosote Contamination Czaplicki et al., Remediation , 2016) 35 Method: Illumina MiSeq 18S amplicon sequencing

  36. Sediment Bacterial Communities Method: Illumina MiSeq 16S amplicon sequencing (Redfern et al ., J. 36 Haz Mat , 2019)

  37. Can Identify Targets for Engineering Microbial Consortia 1. Sphingomonas sp. strain KS14 Genetic (PAH-degrading plasmid) Bioaugmentation Sphingomonas aromaticivorans F199 2. (PAH-degrading plasmid, shown to conjugate) Paracoccus sp. strain HPD-2 3. (PAH-degrader, bioaugmentation candidate) 4. Pseudomonas xanthomarina (4M14) and Arthrobacter nitroguajacolicus (1B16A) (effective at PAH degraders in consortia) Bioaugmentation Bacillus subtilis BMT4i (MTCC 9447) 5. (BaP degrader) Biostimulation 6. Cysteine (stimulate Geobacter) 7. Carbon, Nitrogen, Phosphorus amendments (Redfern et al ., J. 37 Haz Mat , 2019)

  38. Next Steps Precision Bioremediation Strategy #3 se Microbial Community

  39. Aim 1 Metabolic Module Decomposition: Conditional Exchangeability of Microbes Across Identifying Conflictual Interactions Samples

  40. Aim 3: Experimental Design to Evalute Model Future Work Prediction High throughput sequencing Comparison with Bioaugmentation Stability Analysis Modeling Results

  41. Acknowledgments Helen Hsu-Kim, PhD Rytas Vilgalys, PhD Mark Wiesner, PhD David R. Singleton, PhD P. Lee Ferguson, PhD Richard T. Di Giulio, PhD Heather M. Stapleton, PhD 41

Recommend


More recommend