preamble the generalized pareto process characterizations
play

preamble The generalized Pareto process (?); characterizations and - PowerPoint PPT Presentation

preamble The generalized Pareto process (?); characterizations and properties Ana Ferreira, Instituto Superior de Agronomia, UTL and CEAUL Laurens de Haan, Erasmus University Rotterdam and CEAUL Workshop on spatial extreme value theory and


  1. preamble

  2. The generalized Pareto process (?); characterizations and properties Ana Ferreira, Instituto Superior de Agronomia, UTL and CEAUL Laurens de Haan, Erasmus University Rotterdam and CEAUL Workshop on spatial extreme value theory and properties of max-stable random fields University of Poitiers, November 9, 2012, France Poitiers 2012 theslide – 1 / 12

  3. Motivation ⊲ Motivation A stochastic process X in C ( S ) = { f : S → R , f continuous } , S ⊂ R d compact, is Simple GP process in the maximum domain of attraction of a max-stable process if, Finite dimensions GP process ∃ a n ( s ) > 0 and b n ( s ) ∈ R , continuous functions on S, such that Regular variation References � X i ( s ) − b n ( s ) � max , (1) a n ( s ) 1 ≤ i ≤ n s ∈ S X, X 1 , . . . , X n i.i.d., converges weakly in C ( S ) ; the limiting proc. is max-stable. Take the normalized process � 1 /γ ( s ) � 1 + γ ( s ) X ( s ) − b t ( s ) TX t ( s ) := , s ∈ S. a t ( s ) + It is well known (de Haan and Lin (2001)) that (1) is equivalent to: (i) uniform convergence of the marginal distributions, � X ( s ) − b t ( s ) � = (1 + γ ( s ) x ) − 1 /γ ( s ) , t →∞ tP lim > x 1 + γ ( s ) x > 0 , a t ( s ) uniformly in s , Poitiers 2012 theslide – 2 / 12

  4. Motivation ⊲ Motivation (ii) convergence of measures, Simple GP process Finite dimensions C + ( S ) � � t →∞ tP ( TX t ∈ A ) = ν ( A ) , lim A ∈ B , GP process Regular variation References C + ( S ) = { f ∈ C ( S ) : f ≥ 0 } , for all A such that ν ( ∂A ) = 0 and inf { sup s ∈ S f ( s ) : f ∈ A } > 0 . Then ν is homogeneous of order -1: ν ( tA ) = t − 1 ν ( A ) for all t > 0 . The homogeneity property is basically what characterizes Pareto distributions. Recall, for a standard Pareto r.v. P ( Y > yu | Y > u ) = 1 /y , y, u > 1 , i.e. P ( Y > yu ) = y − 1 P ( Y > u ) . The resulting exponent measure and its homogeneity are also well known for random vectors verifying the maximum domain of attraction condition. Poitiers 2012 theslide – 3 / 12

  5. Simple GP process Theorem. Let W be a stoch. proc. in C + ( S ) . Equivalent are: Motivation ⊲ Simple GP process Finite dimensions 1. (Random functions) GP process Regular variation � � (a) P sup s ∈ S W ( s ) ≥ 1 = 1 , References � � (b) E W ( s ) / sup s ∈ S W ( s ) > 0 for all s ∈ S , � � C + (c) P ( W ∈ rA ) = r − 1 P ( W ∈ A ) , for all r > 1 , A ∈ B 1 ( S ) , rA ≡ { rf, f ∈ A } , and C + 1 ( S ) := { f ∈ C + ( S ) : sup s ∈ S f ( s ) ≥ 1 } . 2. (POT - peaks-over-threshold - stability) = x − 1 , for x > 1 (stand. Pareto distr.), � � (a) P sup s ∈ S W ( s ) > x � � (b) E W ( s ) / sup s ∈ S W ( s ) > 0 for all s ∈ S , � � � � � sup s ∈ S W ( s ) > r W W � (c) P sup s ∈ S W ( s ) ∈ B = P sup s ∈ S W ( s ) ∈ B , � � C + ¯ for all r > 1 , B ∈ B 1 ( S ) with C + ¯ 1 ( S ) := { f ∈ C + ( S ) : sup s ∈ S f ( s ) = 1 } . Poitiers 2012 theslide – 4 / 12

  6. Simple GP process Motivation 3. (Constructive approach) W ( s ) = Y V ( s ) , for all s ∈ S , for some Y and ⊲ Simple GP process V = { V ( s ) } s ∈ S verifying: Finite dimensions GP process Regular variation (a) Y is a standard Pareto random variable, F Y ( y ) = 1 − 1 /y , y > 1 , References (b) V ∈ C + ( S ) is a stochastic process verifying sup s ∈ S V ( s ) = 1 a.s., and EV ( s ) > 0 for all s ∈ S , (c) Y and V are independent. Definition. W as characterized above is called simple Pareto process. Sketch of proof. ( 2 . ⇒ 3 . ) Note that sup s ∈ S W ( s ) < ∞ a.s. Take: W Y = sup W ( s ) and V = sup s ∈ S W ( s ) . s ∈ S Poitiers 2012 theslide – 5 / 12

  7. Simple GP process Motivation � � C + ¯ ( 3 . ⇒ 1 . ) Let, for all r > 1 , B ∈ B 1 ( S ) ⊲ Simple GP process Finite dimensions � � f f ∈ C + ( S ) : sup s ∈ S f ( s ) > r, A r,B = sup s ∈ S f ( s ) ∈ B = r × A 1 ,B ; GP process Regular variation References � W � � � P W ∈ A r,B = P sup W ( s ) > r, sup s ∈ S W ( s ) ∈ B s ∈ S = P ( Y > r, V ∈ B ) = P ( Y > r ) P ( V ∈ B ) = 1 � W � = 1 � � r P sup W ( s ) > 1 , sup s ∈ S W ( s ) ∈ B r P W ∈ A 1 ,B . s ∈ S = 1 = 1 � � � � ( 1 . ⇒ 2 . ) For any r ≥ 1 , P sup s ∈ S W ( s ) ≥ r r P sup s ∈ S W ( s ) ≥ 1 r . � � C + ¯ Also for any B ∈ B 1 ( S ) , � W � P sup W ( s ) ≥ r, sup s ∈ S W ( s ) ∈ B s ∈ S = 1 � W � = 1 � W � r P sup W ( s ) ≥ 1 , sup s ∈ S W ( s ) ∈ B r P sup s ∈ S W ( s ) ∈ B . s ∈ S Poitiers 2012 theslide – 6 / 12

  8. Simple GP process Motivation Formulas for distribution functions: ⊲ Simple GP process Finite dimensions Let w, W ∈ C + ( S ) , with w > 0 and W simple Pareto process. Then, GP process Regular variation References � V ( s ) � � V ( s ) � P ( W ≤ w ) = E sup − E sup . w ( s ) ∧ 1 w ( s ) s ∈ S s ∈ S Other simple but motivating formulas are: if E inf s ∈ S V ( s ) > 0 , (i) for x ∈ R , � 1 , x < 1 P ( W > x | W > 1) = 1 /x , x ≥ 1 , (ii) for s ∈ S , x ∈ R , � 1 , x < 1 P ( W ( s ) > x | W ( s ) > 1) = 1 /x , x ≥ 1 . Poitiers 2012 theslide – 7 / 12

  9. Finite dimensions Motivation Finite dimensional distributions: Simple GP process For x i > 0 , i = 1 , . . . , d , for all integer d , ⊲ Finite dimensions GP process � V ( s i ) � � V ( s i ) � Regular variation P ( W ( s 1 ) ≤ x 1 , . . . , W ( s d ) ≤ x d ) = E max − E max References x i ∧ 1 x i 1 ≤ i ≤ d 1 ≤ i ≤ d which matches to known formulas for Pareto random vectors. E.g., in Rootz´ en and Tajvidi (2006) the definition for a d − dimensional d.f. of a Pareto r.v. is, (log G ( x 1 ∧ 0 , . . . , x d ∧ 0) − log G ( x 1 , . . . , x d )) / log G (1 , . . . , 1) . Recall the fin-dim distributions of simple max-stable η ∈ C + ( S ) (de Haan (1984), for s i ∈ S , x i > 0 , i = 1 , . . . , d , all d , � V ( s i ) � G ( x 1 , . . . , x d ) = P ( η ( s 1 ) ≤ x 1 , . . . , η ( s d ) ≤ x d ) = exp − E max . x i 1 ≤ i ≤ d Recall the representation for η (Penrose, 1992) η = d � Z i V i . i =1 , 2 ,... (0 , ∞ ] , r − 2 dr where { Z i } ∞ and V i ∈ C + ( S ) i.i.d. with � � i =1 are from a PPP EV i ( s ) = 1 ∀ s and E sup s ∈ S V i ( s ) < ∞ . Poitiers 2012 theslide – 8 / 12

  10. GP process Motivation Let Simple GP process Finite dimensions γ = { γ ( s ) } s ∈ S extreme value index function ⊲ GP process Regular variation µ = { µ ( s ) } s ∈ S location function References σ = { σ ( s ) } s ∈ S > 0 scalling function all in C ( S ) . The generalized Pareto process in C ( S ) is given by W µ,σ,γ = µ + σ W γ − 1 . γ � � C + E.g. it verifies the homogeneity property, for all r > 1 and A ∈ B 1 ( S ) , �� � 1 /γ � �� � 1 /γ � 1 + γ W µ,σ,γ − µ 1 + γ W µ,σ,γ − µ = r − 1 P P ∈ rA ∈ A . σ σ Poitiers 2012 theslide – 9 / 12

  11. Regular variation Motivation (de Haan and Lin 2001, Hult and Lindskog 2005) X in C ( S ) is regularly varying if Simple GP process ∃ α > 0 and a probability measure ρ , Finite dimensions GP process � � ⊲ Regular variation X P sup s ∈ S X ( s ) > tx, sup s ∈ S X ( s ) ∈ · → W x − α ρ ( · ) , References x > 0 , t → ∞ , � � P sup s ∈ S X ( s ) > t on { f ∈ C ( S ) : sup s ∈ S f ( s ) = 1 } . In a ‘standard’ form α = 1 . On the other hand, the condition for the convergence of measures in the max. dom. of attr. cond. for X ∈ C ( S ) is equivalent to (de Haan and Lin 2001), � � P sup s ∈ S TX t ( s ) > x � = 1 lim x , x > 1 , � P sup s ∈ S TX t ( s ) > 1 t →∞ and � TX t � � sup � t →∞ P lim sup s ∈ S TX t ( s ) ∈ B TX t ( s ) > 1 = ρ ( B ) , s ∈ S � � C + ¯ , ρ ( ∂B ) = 0 , ρ some probability measure on ¯ C + with B ∈ B 1 ( S ) 1 ( S ) . Poitiers 2012 theslide – 10 / 12

  12. Regular variation Motivation Hence, Simple GP process Finite dimensions � � T X t P sup s ∈ S TX t ( s ) > 1 , sup s ∈ S T X t ( s ) ∈ B GP process ⊲ Regular variation � � P sup s ∈ S TX t ( s ) > 1 References � � T X t P sup s ∈ S TX t ( s ) > tx, sup s ∈ S T X t ( s ) ∈ B � � P sup s ∈ S TX t ( s ) > t ∼ � � � � P sup s ∈ S TX t ( s ) > t P sup s ∈ S TX t ( s ) > tx i.e. � � T X t P sup s ∈ S TX t ( s ) > tx, sup s ∈ S T X t ( s ) ∈ B ∼ x − 1 ρ ( B ) . � � P sup s ∈ S TX t ( s ) > t That is, X (or its probab. distribution) verifying regularly varying is basically the condition on the convergence of measures in the max. dom. of attr. or, the convergence of the ‘dependence part’ to a Pareto process. Poitiers 2012 theslide – 11 / 12

Recommend


More recommend