Pre-amplification critically analysed Jo Vandesompele professor, Ghent University co-founder and CEO, Biogazelle Advanced Methods in RNA quantification (London, UK) May 21, 2009
outline introduction 450 miRNA pre-amplification Mestdagh et al., Nucleic Acids Research, 2008 [Mestdagh et al., Genome Biology, in press] whole mRNAome pre-amplification prognostic gene signature in cancer patients Vermeulen et al., The Lancet Oncology, accepted
pre-amplification – the one and only quality criterion preservation of differential expression (fold changes) before (B) and after (A) sample pre-amplification [no introduction of bias] (G1S1) B /(G1S2) B = (G1S1) A /(G1S2) A G1 B /G2 B < > G1 A /G2 A gene G, sample S, before B, after A
pre-amplification – the scene pre: before actual qPCR amplification: make large amounts of RNA/(c)DNA from limited input single cell – picograms – nanograms >> micrograms transcriptome wide all long RNA molecules advantages o no prior knowledge of target genes is needed o study can grow disadvantages o somewhat more expensive focused pre-amplification predefined set of sequences advantages o fast and simple disadvantages o all targets need to be known in advance
pre-amplification – the players transcriptome wide Eberwine method o T7-RNA polymerase based in vitro transcription > antisense RNA o home brew protocols SMART method (Clontech) o template switch mechanism sense RNA o T7-RNA in vitro transcription Phi29 based o rolling circle amplification – strand displacement o cDNA SPIA technology (NuGEN) o hybrid RNA/DNA SPIA primer o cDNA focused pre-amplification limited cycle PCR (10-14 cycles)
Ebermine method 3’ 5’ AAAAA 3’ TTTTT 5’ ste 1 streng cDNA-synthese (met T7-oligo(dT) primer) 5’ 3’ AAAAA 3’ 5’ TTTTT ste 1 ronde 3’ AAAAA 5’ de 2 streng cDNA-synthese TTTTT 5’ 3’ antisense RNA-amplificatie 3’ 5’ UUUUU (T7 RNA polymerase) 5’ NNNNNN 3’ 5’ 3’ NNNNNN ste 1 streng cDNA-synthese 5’ (met random hexameren) 3’ UUUUU de 2 ronde 3’ de 5’ AAAAA 2 streng cDNA-synthese (met T7-oligo(dT) primer) 5’ TTTTT antisense RNA-amplificatie 3’ UUUUU 5’ (T7 RNA polymerase)
SMART
SPIA
microRNA pre-amplification stem-loop megaplex reverse transcription using 20 ng total RNA limited-cycle pre-amplification (14) qPCR profiling 450 miRNAs and controls higher sensitivity minimal amplification bias (Mestdagh et al., Nucleic Acids Research)
minimal pre-amplification bias ∆∆Cq (|∆Cq NP - ∆Cq P |) NBL-S, IMR-32 ∆∆Cq (|∆Cq NP - ∆Cq P |) NBL-S, IMR-32 8 2.5 8 7 7 2 6 6 5 5 1.5 4 4 1 3 3 2 2 0.5 1 1 0 0 0 10 15 20 25 30 35 10 15 20 25 30 10 15 20 25 30 35 Average Cq NP (NBL-S, IMR-32) Average Cq NP (NBL-S, IMR-32) 0 0 -0.2 -0.1 -0.4 Average ∆∆Cq Average ∆∆Cq -0.2 -0.6 -0.3 -0.8 -0.4 -1 -0.5 -1.2 -1.4 -0.6
single cell profiling 30 30 30 30 A B 25 25 25 25 Cq-value Cq-value 20 20 20 20 15 15 15 15 miR-18a miR-92 10 10 10 10 R 2 = 0.975 R 2 = 0.998 5 5 5 5 0 0 0 0 1 2 4 8 16 32 64 128 0 2 4 6 8 10 12 14 0 2 4 6 8 0 2 4 6 8 10 12 14 total cell number total RNA input (pg) 35 35 35 35 30 30 30 30 25 25 25 25 Cq-value Cq-value 20 20 20 20 15 15 15 15 miR-20b miR-19a 10 10 10 10 R 2 = 0.993 R 2 = 0.996 5 5 5 5 0 0 0 0 1 2 4 8 16 32 64 128 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 total cell number total RNA input (pg)
Mestdagh et al., Nucleic Acids Research, 2008
outline background research & goals neuroblastoma prognostic marker selection study design and workflow RNA quality control sample pre-amplification normalization data-analysis and results
biomarker signature based stratification
biomarker signature based stratification
aim development and validation of a robust prognostic gene signature for neuroblastoma using real-time qPCR identifying patients with increased risk in the current low risk and high risk group good molecular signature in the current high risk group better choice of risk-related therapy
neuroblastoma most frequent extra-cranial solid tumor in children originates from primitive (immature) sympathetic nervous system cells 1:100,000 children (< 15 years) 20 cases/year Belgium | 700 cases/year USA 15% of childhood cancer deaths prognosis is dependent on tumor stage (localized vs. metastatic disease) age at diagnosis (< or > 1 year) genetic defects: amplification MYCN, ploidy, loss of 1p, gain of 17q
prognostic classification misclassifications resulting in overtreatment or undertreatment need for additional tumor-specific prognostic markers current microarray gene expression studies data overfitting unstable gene lists lack of overlap biological & technical noise much more genes than samples probe annotation / platform different risk definition different data processing and analysis
study workflow • meta-analysis of 7 published microarray gene selection of a top ranking expression studies list of 59 prognostic • literature screening of almost 800 abstracts from markers single-gene studies RNA quality control 423 • two PCR-based assays samples • capillary gel electrophoresis (Experion) sample pre-amplification (WT-Ovation) analysis of 366 primary untreated neuroblastoma tumours using real-time qPCR • Prediction Analysis of Microarrays data-analysis • Kaplan-Meier • Cox proportional hazards
towards real-time PCR signature profiling 100 ng total RNA 30 ng quality control 10 ng unbiased amplification WT-Ovation (NuGEN) PCR assay design and validation sensitivity, specificity and efficiency RTPrimerDB (Pattyn et al., 2006, NAR; Lefever et al, 2009, NAR) absolute standards real-time PCR using 384-well format sample maximization strategy (Hellemans et al., Genome Biology, 2007) 366 tumors and 1 gene/plate
WT-Ovation reproducibility 35,00 mean of 5, 15 and 50 ng of total RNA amplified 30,00 25,00 mean Cq (n=3) Stratagene cell line A cell line B cell line C 20,00 15,00 10,00 ACTB RPL13A 18S YWHAZ B2M GAPDH UBC HPRT1 SDHA HMBS genes
WT-Ovation – no amplification bias 100 90 80 cumulative distribution 70 60 50 40 30 20 10 0 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 bias (Cq) median bias = 0.36, 90%tile bias = 0.61
WT-Ovation – no amplification bias 100 90 no need for DNase treatment no need for cleanup of amplified products 80 cumulative distribution 70 60 50 40 30 20 10 0 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 bias (Cq) median bias = 0.36, 90%tile bias = 0.61
preservation of differential expression
qPCR reproducibility within a 384-well plate: 4 x 96 replicates 10,000 # 1,000 # 100 # 10 # 40 35 30 25 20 15 10 5 0 0 50 100 150 200 250 300 350 400
qPCR reproducibility between two identical 384-well plates maximum Δ Cq: 0.45 40 35 30 25 20 15 15 20 25 30 35 40
absolute standards FP stuffer RCRP synthetic control 55 nucleotides PAGE purification blocking group 5 points dilution series: 15 molecules > 150.000 molecules
absolute standards reproducibility across master mixes (5) and instruments (2) 35 30 25 MM1 20 MM2 MM3 MM4 15 MM5 10 5 0 1000000 100000 10000 1000 100 10
absolute standards cross lab comparison 366 samples 5 standards (triplicates) 5 reference genes + 5 other genes
absolute standards cross lab comparison 5 standards (triplicates) Cq qPCR instrument 1, mastermix 1 36 34 32 average Δ Cq standards 30 28 correction Cq samples 26 24 22 20 18 16 16 18 20 22 24 26 28 30 32 34 36 Cq qPCR instrument 2, mastermix 2
absolute standards cross lab comparison ARHGEF7 gene 366 samples use of 5 standards (triplicates) for correction Cq qPCR instrument 1, mastermix 1 36 34 32 30 28 26 24 22 20 18 16 16 18 20 22 24 26 28 30 32 34 36 Cq qPCR instrument 2, mastermix 2
rigorous control of RNA quality 423 primary untreated NB (100 ng total RNA) 5’ - 3’ assay (HPRT1): SPUD assay (Nolan et al, 2006): evaluation of mRNA integrity detection of inhibitors 30 ng Computed gel analysis (Experion, Biorad): evaluation of total RNA quality 366 RNA samples
impact of RNA quality on expression stability differences in reference gene ranking between intact and degraded RNA (Perez-Novo et al., Biotechniques, 2005)
RNA quality parameters 80 50 80 40 60 60 frequency 30 40 40 20 20 20 10 0 0 0 0 5 10 15 20 5 10 15 20 25 2 4 6 8 10 RQI 5’ - 3’ dCq AluSq Cq
Recommend
More recommend