practice problems
play

Practice problems Oleg Ivrii July 12, 2020 Oleg Ivrii Practice - PowerPoint PPT Presentation

Practice problems Oleg Ivrii July 12, 2020 Oleg Ivrii Practice problems Exam topics The exam will have 6 problems, the topics are: 1 Solve an IVP or a BVP 2 Gronwalls inequality, continuation of solutions 3 ODEs with variable coefficients


  1. Practice problems Oleg Ivrii July 12, 2020 Oleg Ivrii Practice problems

  2. Exam topics The exam will have 6 problems, the topics are: 1 Solve an IVP or a BVP 2 Gronwall’s inequality, continuation of solutions 3 ODEs with variable coefficients and Wronskians 4 Laplace transform 5 Boundary value problems and the maximum principle 6 Eigenvalue problems and the Sturm-Liouville Theorem Oleg Ivrii Practice problems

  3. Solve an IVP or a BVP 1. Solve the initial value problem y ′′ + 3 y ′ + 2 y = x 3 with the initial conditions y (0) = y ′ (0) = 0. Oleg Ivrii Practice problems

  4. Solve an IVP or a BVP 2. Solve the boundary value problem y ′′ + y = sin(2 x ) , y (0) = 0 , y ( π ) = 0 . Oleg Ivrii Practice problems

  5. Solve an IVP or a BVP 3. Show that the boundary value problem y ′′ + y = x , y (0) + y ′ (0) = 0 , y ( π/ 2) − y ′ ( π/ 2) = π/ 2 has no solution. Oleg Ivrii Practice problems

  6. Solve an IVP or a BVP 4. Solve the following boundary value problem y ′′ + 2 y ′ + 10 y = 0 , y ( π/ 6) = y ′ ( π/ 6) . y (0) = y ( π/ 6) , Oleg Ivrii Practice problems

  7. Gronwall’s inequality, continuation of solutions 1. Let y ( x ) be a solution of the IVP y ′ = y − y 2 , y (0) = a , 0 < a < 1 . Show that a < y ( x ) ≤ 1 for all x ∈ (0 , ∞ ). Oleg Ivrii Practice problems

  8. Gronwall’s inequality, continuation of solutions 2. (Exercise 3, Problem 1) Let y ( x ) be the solution of the initial value problem y ′ ( x ) = y 2 − x , � y (0) = 1 , defined for x ∈ ( − ε, ε ). Show that y ( x ) extends to the interval [0 , 1) with the bounds 1 1 + x < y ( x ) < 1 − x , x ∈ [0 , 1) . Oleg Ivrii Practice problems

  9. Gronwall’s inequality, continuation of solutions 3. (a) Show that the Riccati equation y ′ = 1 + x 2 + y 2 has no solution on the interval (0 , π ). (b) Show that the Riccati equation y ′ = 1 + y 2 − x 2 has a unique solution defined on the entire real axis. Oleg Ivrii Practice problems

  10. Gronwall’s inequality, continuation of solutions 4. Show that the IVP y ′ = f ( x , y ) , y (0) = a has at most one solution provided y → f ( x , y ) is non-decreasing for any x ∈ R . Oleg Ivrii Practice problems

  11. ODEs with variable coefficients and Wronskians 1. (a) Suppose u , v be two linearly independent solutions of the second-order linear homogenous ODE y ′′ + p ( x ) y ′ + q ( x ) = 0 . Show that p ( x ) = − W ′ ( u , v )( x ) q ( x ) = W ( u ′ , v ′ )( x ) W ( u , v )( x ) , W ( u , v )( x ) . (b) Construct a second-order linear homogenous ODE which has solutions u ( x ) = x and v ( x ) = sin x . Oleg Ivrii Practice problems

  12. ODEs with variable coefficients and Wronskians 2. (Exercise 5, Problem 3) Consider the inhomogeneous Euler equation y ′′ − 2 x · y ′ + 2 x 2 · y = f ( x ) . (a) Check that y 1 ( x ) = x solves the homogeneous Euler equation with f ( x ) = 0. Find a complementary solution y 2 ( x ). (b) Use the method of variation of parameters to write down the general solution of the inhomogeneous Euler equation. Oleg Ivrii Practice problems

  13. ODEs with variable coefficients and Wronskians 3. Find the general solution of y ′′′ − 2 y ′′ − y ′ + 2 y = 12 e 2 x e x + 1 Hint. All roots are integers or complex integers. Oleg Ivrii Practice problems

  14. ODEs with variable coefficients and Wronskians 4. (a) Find the general solution of y ′′′ + y ′′ + y ′ + y = e x . (b) Find the general solution of y ′′′ + y ′′ + y ′ + y = tan x . Hint. All roots are integers or complex integers. Oleg Ivrii Practice problems

  15. Boundary value problems and the maximum principle 1. Show that the following boundary value problems have at least one solution: (a) y ′′ = 1 + x 2 e − y , y (0) = 1 , y (1) = 7 , (b) y ′′ = sin x cos y + e x , y (0) = 0 , y (1) = 1 . Oleg Ivrii Practice problems

  16. Boundary value problems and the maximum principle 2. Show that the following boundary value problems have at most one solution: (a) y ′′ = y 3 + x , y (0) = 0 , y (1) = 1 , (b) y ′′ = y + cos y + x 2 , y (0) = 1 , y (1) = 5 . Oleg Ivrii Practice problems

  17. Boundary value problems and the maximum principle 3. (Exercise 5, Problem 4) Show that the boundary value problem y ′′ − xy = 0 , x ∈ (0 , 1) , y (0) = 0 , y (1) = 1 has a unique solution. Prove the bounds: x + x 2 ≤ y ( x ) ≤ x , x ∈ [0 , 1] . 2 Note. The problem asks you to prove three things: existence, uniqueness and the relevant bounds. Each part requires some imagination but can be done separately. Oleg Ivrii Practice problems

  18. Boundary value problems and the maximum principle 4. (Exercise 11, Problem 4) Show that the initial value problem y ′′ + y ′ / x − y = 0 , y ′ (0) = 0 x ∈ (0 , 1) , y (0) = 1 , has a unique solution. Prove the bounds: 1 + x 2 / 4 ≤ y ( x ) ≤ 1 + x 2 / 3 , x ∈ [0 , 1] . Note. The problem asks you to prove three things: existence, uniqueness and the relevant bounds. Each part requires some imagination but can be done separately. Oleg Ivrii Practice problems

  19. Laplace transform 1. Solve the initial value problem y ′′ − 2 y ′ + 2 y = 0 , y ′ (0) = 0 y (0) = 2 , with help of the Laplace transform. Oleg Ivrii Practice problems

  20. Laplace transform 2. Solve the initial value problem y ′′ − 4 y ′ + 4 y = 0 , y ′ (0) = 1 y (0) = 1 , with help of the Laplace transform. Oleg Ivrii Practice problems

  21. Laplace transform 3. Solve the initial value problem y ′′ − 3 y ′ + 2 y = g ( t ) , y ′ (0) = 0 , y (0) = 0 , with help of the Laplace transform, where � sin t , 0 ≤ t ≤ π, g ( t ) = 0 , t ≥ 0 . Oleg Ivrii Practice problems

  22. Laplace transform 4. The Bessel function of order zero has the power series expansion ∞ ( − 1) n t 2 n � J 0 ( t ) = 2 2 n ( n !) 2 . n =0 Show that 1 � � L J 0 ( t ) ( s ) = √ s 2 + 1 and √ ( s ) = e − s / 4 � � L J 0 ( t ) . s Oleg Ivrii Practice problems

  23. Eigenvalue problems and the Sturm-Liouville Theorem 1. You are given that the Sturm-Liouville problem y ′′ = − λ y , y (0) = 0 , y (1) = 0 , has normalized eigenfunctions √ λ n = n 2 π 2 . φ n ( x ) = 2 sin( n π x ) , Use this information to solve y ′′ = sin(2 π x ) − sin(3 π x ) , y (0) = 0 , y (1) = 0 . Oleg Ivrii Practice problems

  24. Eigenvalue problems and the Sturm-Liouville Theorem 2. You are given that the Sturm-Liouville problem y ′′ = − λ y , y (0) = 0 , y (1) = 0 , has normalized eigenfunctions √ λ n = n 2 π 2 . φ n ( x ) = 2 sin( n π x ) , Find a sequence of coefficients { a n } such that y = � a n φ n solves y ′′ = x − x 2 , y (0) = 0 , y (1) = 0 . Oleg Ivrii Practice problems

  25. Eigenvalue problems and the Sturm-Liouville Theorem 3. Solve the eigenvalue problem − y ′′ = λ y , x ∈ (0 , 1) , with the boundary conditions y (0) = y ′ (1) = 0 . Write down the associated eigenfunctions. Oleg Ivrii Practice problems

  26. Eigenvalue problems and the Sturm-Liouville Theorem 4. Write down a particular solution to the wave equation on x ∈ [0 , 1] and t ∈ [0 , ∞ ]:  u tt = u xx ,      u ( t , 0) = u ( t , 1) = 0 ,  u (0 , x ) = 2 sin(2 π x ) − 3 sin(3 π x ) ,      u t (0 , x ) = 0 .  Oleg Ivrii Practice problems

  27. Thank you for your attention! Oleg Ivrii Practice problems

Recommend


More recommend