Posteriors, conjugacy, and exponential families for completely random measures Tamara Broderick, Ashia C. Wilson, Michael I. Jordan MIT Berkeley Berkeley
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] p ( x | θ ) = θ x (1 + θ ) − 1 x ∈ { 0 , 1 } θ > 0 � p ( θ ) ∝ θ α (1 + θ ) − α − β = BetaPrime( θ | α , β ) α > 0 , β > 0 p ( θ | x ) ∝ θ α + x (1 + θ ) − ( α + x ) − ( β − x +1) 1
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] • Likelihood ➞ conjugate prior, straightforward inference • Integration ➞ addition 2
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Background • Parametric exponential family conjugacy [Diaconis & Ylvisaker 1979] • Likelihood ➞ conjugate prior, straightforward inference • Integration ➞ addition 2
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Want: One framework • For Bayesian nonparametric models: • Likelihood ➞ conjugate prior, straightforward inference 3
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Want: One framework • For Bayesian nonparametric models: • Likelihood ➞ conjugate prior, straightforward inference 3
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Want: One framework • For Bayesian nonparametric models: • Likelihood ➞ conjugate prior, straightforward inference 3
Models • Beta process, Bernoulli process (IBP) • Gamma process, Poisson likelihood process (DP, CRP) • Beta process, negative binomial process Want: One framework • For Bayesian nonparametric models: • Likelihood ➞ conjugate prior, straightforward inference 3
Clustering Technology Sports Health Econ Arts Document 1 Document 2 Document 3 Document 4 Document 5 Document 6 Document 7 4
Feature allocation Technology Sports Health Econ Arts Document 1 Document 2 Document 3 Document 4 Document 5 Document 6 Document 7 5
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Indian buffet process (IBP) ... k = 1 2 For n = 1, 2, ..., N n = 1 1. Data point n has an existing 2 feature k that has occurred S n − 1 ,k S n − 1 ,k times with probability ... β + n − 1 � 2. Number of new features for data N point n: ✓ ◆ β K + γ n = Poisson β + n − 1 6 [Griffiths & Ghahramani 2006]
Recommend
More recommend