plan of the lecture
play

Plan of the Lecture Review: Nyquist stability criterion Todays - PowerPoint PPT Presentation

Plan of the Lecture Review: Nyquist stability criterion Todays topic: Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots. Plan of the Lecture Review: Nyquist stability criterion Todays


  1. Plan of the Lecture ◮ Review: Nyquist stability criterion ◮ Today’s topic: Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots.

  2. Plan of the Lecture ◮ Review: Nyquist stability criterion ◮ Today’s topic: Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots. Goal: explore more examples of the Nyquist criterion in action.

  3. Plan of the Lecture ◮ Review: Nyquist stability criterion ◮ Today’s topic: Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots. Goal: explore more examples of the Nyquist criterion in action. Reading: FPE, Chapter 6

  4. Review: Nyquist Plot Consider an arbitrary transfer function H . Nyquist plot: Im H ( jω ) vs. Re H ( jω ) as ω varies from −∞ to ∞ Im H ( jω ) Re H ( jω )

  5. Review: Nyquist Stability Criterion + K G ( s ) Y R − Goal: count the number of RHP poles (if any) of the closed-loop transfer function KG ( s ) 1 + KG ( s ) based on frequency-domain characteristics of the plant transfer function G ( s )

  6. The Nyquist Theorem + R K G ( s ) Y − Nyquist Theorem (1928) Assume that G ( s ) has no poles on the imaginary axis ∗ , and that its Nyquist plot does not pass through the point − 1 /K . Then N = Z − P #( � of − 1 /K by Nyquist plot of G ( s )) = #(RHP closed-loop poles) − #(RHP open-loop poles) ∗ Easy to fix: draw an infinitesimally small circular path that goes around the pole and stays in RHP

  7. The Nyquist Stability Criterion + K G ( s ) Y R − N = Z P − ���� ���� ���� #( � of − 1 /K ) #(unstable CL poles) #(unstable OL poles) Z = N + P Z = 0 N = − P ⇐ ⇒

  8. The Nyquist Stability Criterion + K G ( s ) Y R − N = Z P − ���� ���� ���� #( � of − 1 /K ) #(unstable CL poles) #(unstable OL poles) Z = N + P Z = 0 N = − P ⇐ ⇒ Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K ) is stable if and only if the Nyquist plot of G ( s ) encircles the point − 1 /K P times counterclockwise , where P is the number of unstable (RHP) open-loop poles of G ( s ).

  9. Applying the Nyquist Criterion Workflow: Bode M and φ -plots Nyquist plot → −

  10. Applying the Nyquist Criterion Workflow: Bode M and φ -plots Nyquist plot − → Advantages of Nyquist over Routh–Hurwitz

  11. Applying the Nyquist Criterion Workflow: Bode M and φ -plots Nyquist plot − → Advantages of Nyquist over Routh–Hurwitz ◮ can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)

  12. Applying the Nyquist Criterion Workflow: Bode M and φ -plots Nyquist plot − → Advantages of Nyquist over Routh–Hurwitz ◮ can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function) ◮ less computational, more geometric (came 55 years after Routh)

  13. Example 1 (From Last Lecture) 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2)

  14. Example 1 (From Last Lecture) 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Characteristic equation: s 2 + 3 s + K + 2 = 0 ( s + 1)( s + 2) + K = 0 ⇐ ⇒

  15. Example 1 (From Last Lecture) 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Characteristic equation: s 2 + 3 s + K + 2 = 0 ( s + 1)( s + 2) + K = 0 ⇐ ⇒ From Routh, we already know that the closed-loop system is stable for K > − 2.

  16. Example 1 (From Last Lecture) 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Characteristic equation: s 2 + 3 s + K + 2 = 0 ( s + 1)( s + 2) + K = 0 ⇐ ⇒ From Routh, we already know that the closed-loop system is stable for K > − 2. We will now reproduce this answer using the Nyquist criterion.

  17. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2)

  18. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Strategy:

  19. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Strategy: ◮ Start with the Bode plot of G

  20. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Strategy: ◮ Start with the Bode plot of G ◮ Use the Bode plot to graph Im G ( jω ) vs. Re G ( jω ) for 0 ≤ ω < ∞

  21. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Strategy: ◮ Start with the Bode plot of G ◮ Use the Bode plot to graph Im G ( jω ) vs. Re G ( jω ) for 0 ≤ ω < ∞ ◮ This gives only a portion of the entire Nyquist plot (Re G ( jω ) , Im G ( jω )) , −∞ < ω < ∞

  22. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Strategy: ◮ Start with the Bode plot of G ◮ Use the Bode plot to graph Im G ( jω ) vs. Re G ( jω ) for 0 ≤ ω < ∞ ◮ This gives only a portion of the entire Nyquist plot (Re G ( jω ) , Im G ( jω )) , −∞ < ω < ∞ ◮ Symmetry: G ( − jω ) = G ( jω )

  23. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Strategy: ◮ Start with the Bode plot of G ◮ Use the Bode plot to graph Im G ( jω ) vs. Re G ( jω ) for 0 ≤ ω < ∞ ◮ This gives only a portion of the entire Nyquist plot (Re G ( jω ) , Im G ( jω )) , −∞ < ω < ∞ ◮ Symmetry: G ( − jω ) = G ( jω ) — Nyquist plots are always symmetric w.r.t. the real axis !!

  24. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2)

  25. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Bode plot: 0. 1 / 2 - 10. - 20. - 30. - 40. - 50. - 60. 0.1 1 10 0 ◦ 0. - 25. - 50. - 75. - 100. - 125. - 150. - 175. − 180 ◦ 0.1 1 10

  26. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Bode plot: 0. 1 / 2 - 10. A - 20. - 30. - 40. - 50. - 60. 0.1 1 10 0 ◦ 0. - 25. - 50. - 75. − 90 ◦ - 100. - 125. - 150. - 175. − 180 ◦ 0.1 1 10

  27. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Bode plot: Nyquist plot: 0. 0.3 1 / 2 - 10. A - 20. 0.2 - 30. - 40. - 50. 0.1 - 60. 0.1 1 10 0 ◦ 0.1 0.2 0.3 0.4 0.5 0. - 25. - 50. - 0.1 - 75. − 90 ◦ - 100. - 125. - 0.2 - 150. − A - 175. − 180 ◦ 0.1 1 10 - 0.3

  28. Example 1 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Bode plot: Nyquist plot: 0. 0.3 1 / 2 - 10. A - 20. 0.2 - 30. - 40. - 50. 0.1 - 60. G ( ∞ ) = 0 0.1 1 10 0 ◦ 0.1 0.2 0.3 0.4 0.5 0. - 25. - 50. - 0.1 - 75. − 90 ◦ - 100. - 125. - 0.2 - 150. − A - 175. − 180 ◦ 0.1 1 10 - 0.3

  29. Example 1: Applying the Nyquist Criterion 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) Nyquist plot: 0.3 0.2 0.1 G ( ∞ ) = 0 0.1 0.2 0.3 0.4 0.5 - 0.1 - 0.2 − A - 0.3

  30. Example 1: Applying the Nyquist Criterion 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) #( � of − 1 /K ) Nyquist plot: = #(RHP CL poles) − #(RHP OL poles) 0.3 � �� � =0 0.2 0.1 G ( ∞ ) = 0 0.1 0.2 0.3 0.4 0.5 - 0.1 - 0.2 − A - 0.3

  31. Example 1: Applying the Nyquist Criterion 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) #( � of − 1 /K ) Nyquist plot: = #(RHP CL poles) − #(RHP OL poles) 0.3 � �� � =0 0.2 = ⇒ K ∈ R is stabilizing if and only if 0.1 G ( ∞ ) = 0 #( � of − 1 /K ) = 0 0.1 0.2 0.3 0.4 0.5 - 0.1 - 0.2 − A - 0.3

  32. Example 1: Applying the Nyquist Criterion 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) #( � of − 1 /K ) Nyquist plot: = #(RHP CL poles) − #(RHP OL poles) 0.3 � �� � =0 0.2 = ⇒ K ∈ R is stabilizing if and only if 0.1 G ( ∞ ) = 0 #( � of − 1 /K ) = 0 0.1 0.2 0.3 0.4 0.5 - 0.1 ◮ If K > 0, #( � of − 1 /K ) = 0 - 0.2 − A - 0.3

  33. Example 1: Applying the Nyquist Criterion 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) #( � of − 1 /K ) Nyquist plot: = #(RHP CL poles) − #(RHP OL poles) 0.3 � �� � =0 0.2 = ⇒ K ∈ R is stabilizing if and only if 0.1 G ( ∞ ) = 0 #( � of − 1 /K ) = 0 0.1 0.2 0.3 0.4 0.5 - 0.1 ◮ If K > 0, #( � of − 1 /K ) = 0 ◮ If 0 < − 1 /K < 1 / 2, - 0.2 − A #( � of − 1 /K ) > 0 - 0.3

  34. Example 1: Applying the Nyquist Criterion 1 G ( s ) = (no open-loop RHP poles) ( s + 1)( s + 2) #( � of − 1 /K ) Nyquist plot: = #(RHP CL poles) − #(RHP OL poles) 0.3 � �� � =0 0.2 = ⇒ K ∈ R is stabilizing if and only if 0.1 G ( ∞ ) = 0 #( � of − 1 /K ) = 0 0.1 0.2 0.3 0.4 0.5 - 0.1 ◮ If K > 0, #( � of − 1 /K ) = 0 ◮ If 0 < − 1 /K < 1 / 2, - 0.2 − A #( � of − 1 /K ) > 0 = ⇒ - 0.3 closed-loop stable for K > − 2

  35. Example 2 1 1 G ( s ) = ( s − 1)( s 2 + 2 s + 3) = s 3 + s 2 + s − 3

  36. Example 2 1 1 G ( s ) = ( s − 1)( s 2 + 2 s + 3) = s 3 + s 2 + s − 3 #(RHP open-loop poles) = 1 at s = 1

  37. Example 2 1 1 G ( s ) = ( s − 1)( s 2 + 2 s + 3) = s 3 + s 2 + s − 3 #(RHP open-loop poles) = 1 at s = 1 Routh: the characteristic polynomial is s 3 + s 2 + s + K − 3 — 3rd degree

  38. Example 2 1 1 G ( s ) = ( s − 1)( s 2 + 2 s + 3) = s 3 + s 2 + s − 3 #(RHP open-loop poles) = 1 at s = 1 Routh: the characteristic polynomial is s 3 + s 2 + s + K − 3 — 3rd degree — stable if and only if K − 3 > 0 and 1 > K − 3.

Recommend


More recommend