physics prospects at the hl lhc
play

Physics Prospects at the HL-LHC Victoria Martin , University of - PowerPoint PPT Presentation

Physics Prospects at the HL-LHC Victoria Martin , University of Edinburgh Higgs Maxwell workshop 2016 1 LHC Run 1 (& 2) IN proton-proton collisions at ATLAS and CMS 2010 s=7 TeV, 44 pb 1 2011 s=7 TeV, 6 fb 1 2012


  1. Physics Prospects at the HL-LHC Victoria Martin , University of Edinburgh Higgs Maxwell workshop 2016 1

  2. LHC Run 1 (& 2) IN proton-proton collisions at ATLAS and CMS ‣ 2010 √ s=7 TeV, 44 pb − 1 ‣ 2011 √ s=7 TeV, 6 fb − 1 ‣ 2012 √ s=8 TeV, 23 fb − 1 ‣ Run 2: 2015 √ s=13 TeV, 4 fb − 1 2

  3. LHC Run 1 (& 2) IN proton-proton collisions at ATLAS and CMS ‣ 2010 √ s=7 TeV, 44 pb − 1 ‣ 2011 √ s=7 TeV, 6 fb − 1 ‣ 2012 √ s=8 TeV, 23 fb − 1 ‣ Run 2: 2015 √ s=13 TeV, 4 fb − 1 OUT Physics results! ‣ Nearly 1000 submitted papers on Run 1 collision data ‣ 9 papers on Run 2 data 2

  4. The Nobel Prize in Physics 2013 François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" 3

  5. The Nobel Prize in Physics 2013 François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" 3

  6. The Nobel Prize in Physics 2013 François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" 3

  7. Run 1 Higgs Boson Results All observations from the LHC consistent with a Standard Model Higgs boson with m H ~ 125 GeV . arXiv:1412.8662 Phys. Rev. D. 90, 052004 (2014) ATLAS-CONF-044 Eur. Phys. J. C 74 (2014) 3076 4

  8. Run 1 Higgs Boson Results All observations from the LHC consistent with a Standard Model Higgs boson with m H ~ 125 GeV . ➡ m H measured in ZZ and γγ final states consistent with 125 GeV . arXiv:1412.8662 Phys. Rev. D. 90, 052004 (2014) ATLAS-CONF-044 Eur. Phys. J. C 74 (2014) 3076 4

  9. Run 1 Higgs Boson Results All observations from the LHC ATLAS and CMS Preliminary ATLAS LHC Run 1 consistent with a Standard Model CMS ATLAS+CMS Higgs boson with m H ~ 125 GeV . 1 ± σ γ γ µ ➡ m H measured in ZZ and γγ final ZZ µ states consistent with 125 GeV . WW µ ➡ It decays like a SM Higgs boson τ τ µ bb µ 0 0.5 1 1.5 2 2.5 3 3.5 4 Parameter value arXiv:1412.8662 Phys. Rev. D. 90, 052004 (2014) ATLAS-CONF-044 Eur. Phys. J. C 74 (2014) 3076 4

  10. Run 1 Higgs Boson Results ATLAS ATLAS and CMS Preliminary All observations from the LHC CMS LHC Run 1 ATLAS and CMS Preliminary ATLAS ATLAS+CMS LHC Run 1 consistent with a Standard Model CMS 1 ± σ ATLAS+CMS Higgs boson with m H ~ 125 GeV . 2 ± σ µ 1 ggF ± σ γ γ µ µ ➡ m H measured in ZZ and γγ final VBF ZZ µ states consistent with 125 GeV . µ WW µ WH ➡ It decays like a SM Higgs boson µ τ τ µ ZH bb µ ➡ It’s produced like a SM Higgs boson µ ttH 0 0.5 1 1.5 2 2.5 3 3.5 4 Parameter value µ arXiv:1412.8662 Phys. Rev. D. 90, 052004 (2014) 0 0.5 1 1.5 2 2.5 3 3.5 4 ATLAS-CONF-044 Parameter value Eur. Phys. J. C 74 (2014) 3076 4

  11. Run 1 Higgs Boson Results All observations from the LHC consistent with a Standard Model Higgs boson with m H ~ 125 GeV . ➡ m H measured in ZZ and γγ final states consistent with 125 GeV . ➡ It decays like a SM Higgs boson ➡ It’s produced like a SM Higgs boson arXiv:1412.8662 Phys. Rev. D. 90, 052004 (2014) ATLAS-CONF-044 Eur. Phys. J. C 74 (2014) 3076 4

  12. But not only … 5

  13. Standard Model Production Cross Section Measurements Status: Nov 2015 80 µ b − 1 σ [pb] total (x2) ATLAS Preliminary 10 11 Theory inelastic √ s = 7, 8, 13 TeV 20 µ b − 1 Run 1,2 LHC pp √ s = 7 TeV 63 µ b − 1 10 6 0.1 < p T < 2 TeV Data 4.5 − 4.9 fb − 1 0.3 < m jj < 5 TeV LHC pp √ s = 8 TeV 10 5 Data 20.3 fb − 1 10 4 n j ≥ 0 LHC pp √ s = 13 TeV 35 pb − 1 Data 85 pb − 1 n j ≥ 0 10 3 n j ≥ 1 n j ≥ 0 e , µ +X 35 pb − 1 n j ≥ 2 n j ≥ 1 t -chan 10 2 WW n j ≥ 1 n j ≥ 2 total n j ≥ 3 Wt 13.0 fb − 1 n j ≥ 2 ggF 10 1 WZ n j ≥ 3 2.0 fb − 1 n j ≥ 4 H → WW n j ≥ 4 n j ≥ 3 W γ ZZ n j ≥ 5 n j ≥ 4 s -chan n j ≥ 5 n j ≥ 4 1 n j ≥ 6 H → ττ Z γ n j ≥ 6 n j ≥ 7 VBF n j ≥ 5 H → WW 10 − 1 n j ≥ 8 n j ≥ 6 H → γγ 10 − 2 n j ≥ 7 n j ≥ 7 H → ZZ → 4 ℓ 10 − 3 pp t¯ Dijets t¯ t V γ t¯ t¯ t γ Zjj W γγ Jets W Z VV H t γγ tW tZ W ± W ± jj R=0.4 R=0.4 EWK EWK fiducial fiducial total total total fiducial fiducial fiducial total total fiducial fiducial fiducial fiducial | y | < 3.0 | y | < 3.0 6 y ∗ < 3.0 njet=0

  14. 95% CL Limits on Masses of Exotic Phenomena in TeV LQ1(ej) x2 stopped gluino (cloud) LQ1(ej)+LQ1( ν j) stopped stop (cloud) LQ2( μ j) x2 HSCP gluino (cloud) LQ2( μ j)+LQ2( ν j) HSCP stop (cloud) Leptoquarks Long-Lived LQ3( ν b) x2 q=2/3e HSCP LQ3( τ b) x2 q=3e HSCP Particles LQ3( τ t) x2 chargino, ctau>100ns, AMSB LQ3(vt) x2 neutralino, ctau=25cm, ECAL time Single LQ1 ( λ =1) 0 1 2 3 4 TeV Single LQ2 ( λ =1) 0 1 2 3 4 TeV j+MET, vector DM=100 GeV, Λ j+MET, axial-vector DM=100 GeV, Λ RS Gravitons j+MET, scalar DM=100 GeV, Λ Dark Matter RS1(jj), k=0.1 RS1(ee, μμ ), k=0.1 γ +MET, vector DM=100 GeV, Λ RS1( γγ ), k=0.1 γ +MET, axial-vector DM=100 GeV, Λ RS1(WW → 4j), k=0.1 l+MET, ξ =+1, SI/SD DM=100 GeV, Λ TeV 0 1 2 3 4 l+MET, ξ =-1, SI/SD DM=100 GeV, Λ CMS Preliminary l+MET, ξ =0, SI/SD DM=100 GeV, Λ 0 1 2 3 4 TeV Heavy Gauge SSM Z'( ττ ) Large Extra Bosons SSM Z'(jj) ADD ( γ +MET), nED=4, MD ADD (j+MET), nED=4, MD Dimensions SSM Z'(bb) ADD (ee, μμ ), nED=4, MS SSM Z'(ee)+Z'(µµ) ADD ( γγ ), nED=4, MS SSM W'(jj) ADD (jj), nED=4, MS QBH, nED=6, MD=4 TeV SSM W'(lv) NR BH, nED=6, MD=4 TeV SSM W'(WZ → lvll) QBH (jj), nED=4, MD=4 TeV SSM W'(WZ → 4j) Jet Extinction Scale String Scale (jj) 0 1 2 3 4 5 TeV 0 1 2 3 4 5 6 7 8 9 10 TeV Excited Compositeness Fermions e* (M= Λ ) dijets, Λ + LL/RR μ * (M= Λ ) dijets, Λ - LL/RR q* (qg) dimuons, Λ + LLIM q* (q γ ) dimuons, Λ - LLIM b* dielectrons, Λ + LLIM 0 1 2 3 4 5 6 TeV dielectrons, Λ - LLIM coloron(jj) x2 single e, Λ HnCM Multijet coloron(4j) x2 single μ , Λ HnCM Resonances gluino(3j) x2 inclusive jets, Λ + gluino(jjb) x2 inclusive jets, Λ - 0 1 2 3 4 TeV 0 1 2 3 4 5 6 7 8 9 101112131415161718192021 TeV 7 CMS Exotica Physics Group Summary – Dec Jamboree, 2015 !

  15. 8

  16. And even … 9

  17. … a little intrigue CMS-PAS-EXO-15-004 ATLAS-CONF-2015-081 -1 CMS Preliminary 2.6 fb (13 TeV) Events / ( 20 GeV ) EBEB category 2 10 4 10 Events / 40 GeV ATLAS Preliminary Data 10 3 10 Data Background-only fit 1 Fit model ± 1 σ 2 -1 10 s = 13 TeV, 3.2 fb -1 2 10 ± σ 10 stat 4 σ 2 (data-fit)/ 0 1 -2 -4 1 − 10 2 2 2 3 3 3 10 4 10 5 10 10 2 10 × × × × Data - fitted background 200 400 600 800 1000 1200 1400 1600 m (GeV) 15 γ γ 10 -1 CMS Preliminary 2.6 fb (13 TeV) Events / ( 20 GeV ) 5 EBEE category 2 10 0 5 − 10 − 10 15 − Data 200 400 600 800 1000 1200 1400 1600 1 Fit model m [GeV] γ γ ± 1 σ -1 10 2 ± σ stat 4 σ 2 (data-fit)/ 0 -2 -4 2 2 2 3 3 10 3 10 4 10 5 10 10 2 10 × × × × m (GeV) γ γ

  18. To the Future! 11

  19. LHC → HL-LHC http://hilumilhc.web.cern.ch/about/hl-lhc-project New interaction √ s = 14 TeV √ s = 13 TeV region layout LHC injector upgrade bunch spacing 25 ns Crab cavity luminosity levelling ℒ ~ 2 × 10 34 cm − 2 s − 1 ℒ ~ 1.6 × 10 34 cm − 2 s − 1 ℒ ~ 5 × 10 34 cm − 2 s − 1 Pile Up ~ 40 Pile Up ~ 60 Pile Up ~ 140 today: Higgs Maxwell meeting 2016 12

  20. The Challenge of Pileup • Pileup = number of proton-proton collision per bunch crossing • Instantaneous luminosity of 5 (7) × 10 34 cm − 2 s − 1 corresponds to an average pileup of 〈 µ 〉 of 140 (200). Simulated pileup in ATLAS tracker Run 1 Pile up of 23 HL-HLC Pile up of 230 13

  21. ATLAS and CMS Upgrades CERN-LHC CERN-LHCC-20 • ATLAS and CMS will be upgraded to achieve the same or better performance as in Run 1. ‣ Pileup mitigation is a critical element of detector designs. • Recently released detector Scoping Documents investigate the impact of different detector cost scenarios on physics performance. • e.g. for 2022: New tracking detectors, new trigger systems, new timing detectors. CMS ATLAS 14

  22. HL-LHC Analysis Techniques • Much effort is focussed on understanding how to mitigate High Pileup pileup in physics analyses • e.g. New method proposed in the literature Pileup Per Particle Identification arXiv:1407.6013 15

Recommend


More recommend