physical defaults the robust probing model
play

Physical Defaults & the Robust Probing Model Sebastian Faust, - PowerPoint PPT Presentation

Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, Franois-Xavier Standaert TU Darmstadt (Germany), Radbout University


  1. Composable Masking Schemes in the Presence of Physical Defaults & the Robust Probing Model Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier Standaert TU Darmstadt (Germany), Radbout University Nijmegen (The Netherlands), DarkMatter LLC (UAE), UCLouvain (Belgium) CHES 2018, Amsterdam, The Netherlands

  2. Masking (e.g., Boolean π’š = π’š 𝟐 + π’š πŸ‘ + β‹― + π’š 𝒆 ) 1 𝑑 Noisy leakages security: 𝑂 ∝ MI (π‘Œ;𝑴) MI π‘Œ; 𝑴 < MI π‘Œ 𝑗 ; 𝑀 𝑗 𝑒 Goal (ideally):

  3. Masking (e.g., Boolean π’š = π’š 𝟐 + π’š πŸ‘ + β‹― + π’š 𝒆 ) 1 Bounded moment security: 𝑀 𝑗 π‘Œ 𝑗 1 ,𝑗 2 ,…,𝑗 π‘’βˆ’1 ( 𝑒 -1)th order statistical moment (ideally) 𝑑 Noisy leakages security: 𝑂 ∝ MI (π‘Œ;𝑴) MI π‘Œ; 𝑴 < MI π‘Œ 𝑗 ; 𝑀 𝑗 𝑒 Goal (ideally):

  4. Masking (e.g., Boolean π’š = π’š 𝟐 + π’š πŸ‘ + β‹― + π’š 𝒆 ) 1 𝑦 = 𝑦 1 + 𝑦 2 + β‹― + 𝑦 𝑒 Probing security: Sets of ( 𝑒 -1) probes are of π‘Œ (ideally) Bounded moment security: 𝑀 𝑗 π‘Œ 𝑗 1 ,𝑗 2 ,…,𝑗 π‘’βˆ’1 ( 𝑒 -1)th order statistical moment (ideally) 𝑑 Noisy leakages security: 𝑂 ∝ MI (π‘Œ;𝑴) MI π‘Œ; 𝑴 < MI π‘Œ 𝑗 ; 𝑀 𝑗 𝑒 Goal (ideally):

  5. Security reductions 2 abstract-qualitative 𝑦 = 𝑦 1 + 𝑦 2 + β‹― + 𝑦 𝑒 probing [Barthe et al., Eurocrypt 2017] bounded moment physical-qualitative [Duc et al., Eurocrypt 2014] physical-quantitative noisy leakages

  6. What can go wrong? (e.g., when computing 𝒃. 𝒄 ) 3 Issue #1. Lack of randomness (can break the independence assumption) 𝑑 1 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 Example: probing 𝑑 1 = 𝑏 1 . 𝑐 1 + 𝑐 2 + 𝑐 3 𝑑 2 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 β‡’ reveals information on 𝑐 (when 𝑑 1 = 1) 𝑑 3 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3

  7. What can go wrong? (e.g., when computing 𝒃. 𝒄 ) 3 Issue #1. Lack of randomness (can break the independence assumption) β€’ mitigated by adding 𝑑 1 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 0 𝑠 𝑠 1 2 Β«refreshing gadgets Β» 𝑑 2 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 𝑠 0 𝑠 + β‡’ 2 3 β€’ can be analyzed in 𝑑 3 𝑠 𝑠 0 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3 2 3 the probing model

  8. What can go wrong? (e.g., when computing 𝒃. 𝒄 ) 3 Issue #1. Lack of randomness (can break the independence assumption) β€’ mitigated by adding 𝑑 1 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 0 𝑠 𝑠 1 2 Β«refreshing gadgets Β» 𝑑 2 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 𝑠 0 𝑠 + β‡’ 2 3 β€’ can be analyzed in 𝑑 3 𝑠 𝑠 0 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3 2 3 the probing model Issue #2. Physical defaults (can break the independence assumption) Example: glitches (transcient values) Β« re-combine Β» the shares such that: 𝑀 𝑗 = πœ€(𝑦 1 βˆ™ 𝑦 2 βˆ™ 𝑦 3 ) (detected in the bounded moment model)

  9. What can go wrong? (e.g., when computing 𝒃. 𝒄 ) 3 Issue #1. Lack of randomness (can break the independence assumption) β€’ mitigated by adding 𝑑 1 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 0 𝑠 𝑠 1 2 Β«refreshing gadgets Β» 𝑑 2 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 𝑠 0 𝑠 + β‡’ 2 3 β€’ can be analyzed in 𝑑 3 𝑠 𝑠 0 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3 2 3 the probing model Issue #2. Physical defaults (can break the independence assumption) β€’ mitigated by adding a Β« non- completeness Β» property [ β‰ˆ Theshold Implementations] β€’ abstract property: can be analyzed in the probing model!

  10. Security notions (and scalability) 4 𝒓 -probing security [ISW, 2004] : any π‘Ÿ -tuple of shares in the protected circuit is independent of any sensitive variable

  11. Security notions (and scalability) 4 𝒓 -probing security [ISW, 2004] : any π‘Ÿ -tuple of shares in the protected circuit is independent of any sensitive variable Problem: the cost of testing probing security increases (very) fast with circuit size and the # of shares (since βˆƒ many tuples) [Barthe et al., Eurocrypt 2015]

  12. Security notions (and scalability) 4 π‘Ÿ 1 + π‘Ÿ 2 ≀ π‘Ÿ π‘Ÿ 1 internal probes π‘Ÿ 2 output probes 𝒓 -probing security [ISW, 2004] : any π‘Ÿ -tuple of shares in the protected circuit is independent of any sensitive variable 𝒓 -(Strong) Non Interference [Barthe et al., CCS 2016] : a circuit gadget (e.g., f 1 ) is NI (SNI) if any set of π‘Ÿ 1 + π‘Ÿ 2 probes can be simulated with at most π‘Ÿ 1 + π‘Ÿ 2 (only π‘Ÿ 1 ) shares of each input D(input shares||probes) β‰ˆ D(input shares||simulation)

  13. Security notions (and scalability) 4 π‘Ÿ 1 + π‘Ÿ 2 ≀ π‘Ÿ π‘Ÿ 1 internal probes π‘Ÿ 2 output probes 𝒓 -probing security [ISW, 2004] : any π‘Ÿ -tuple of shares in the protected circuit is independent of any sensitive variable 𝒓 -(Strong) Non Interference [Barthe et al., CCS 2016] : a circuit gadget (e.g., f 1 ) is NI (SNI) if any set of π‘Ÿ 1 + π‘Ÿ 2 probes can be simulated with at most π‘Ÿ 1 + π‘Ÿ 2 (only π‘Ÿ 1 ) shares of each input D(input shares||probes) β‰ˆ D(input shares||simulation)

  14. Problem statement (simplified) 5 β€’ Composable masking 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 0 𝑠 𝑠 1 2 schemes ignore physical 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 𝑠 0 𝑠 + 2 3 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3 𝑠 𝑠 0 defaults such as glitches 2 3

  15. Problem statement (simplified) 5 β€’ Composable masking 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 0 𝑠 𝑠 1 2 schemes ignore physical 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 𝑠 0 𝑠 + 2 3 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3 𝑠 𝑠 0 defaults such as glitches 2 3 β€’ Treshold implementations y 1 x 1 f 1 mitigate glitches but are only proven β€œuniform” y 2 x 2 f 2 ( β‰ˆ probing secure) y 3 x 3 f 3 β‡’ testing scales badly

  16. Problem statement (simplified) 5 β€’ Composable masking 𝑏 1 𝑐 1 𝑏 1 𝑐 2 𝑏 1 𝑐 3 0 𝑠 𝑠 1 2 schemes ignore physical 𝑏 2 𝑐 1 𝑏 2 𝑐 2 𝑏 2 𝑐 3 𝑠 0 𝑠 + 2 3 𝑏 3 𝑐 1 𝑏 3 𝑐 2 𝑏 3 𝑐 3 𝑠 𝑠 0 defaults such as glitches 2 3 β€’ Treshold implementations y 1 x 1 f 1 mitigate glitches but are only proven β€œuniform” y 2 x 2 f 2 ( β‰ˆ probing secure) y 3 x 3 f 3 β‡’ testing scales badly β€’ Design & prove masked implementations that are ( jointly! ) robust against glitches and composable

  17. (Refined) model and security definition 6 π‘ž 1 Glitch-extended probes: probing any output of a combinatorial sub- circuit allows the adversary to observe all the sub-circuit inputs Example: π‘ž 1 gives 𝑏, 𝑐 and 𝑑

  18. (Refined) model and security definition 6 π‘ž 1 Glitch-extended probes: probing any output of a combinatorial sub- circuit allows the adversary to observe all the sub-circuit inputs Example: π‘ž 1 gives 𝑏, 𝑐 and 𝑑 π‘ž 2 Technical clarification : non-extended probes on the stable registers’ values have to be considered in the simulation too

  19. (Refined) model and security definition 6 π‘ž 1 Glitch-extended probes: probing any output of a combinatorial sub- circuit allows the adversary to observe all the sub-circuit inputs Example: π‘ž 1 gives 𝑏, 𝑐 and 𝑑 π‘ž 2 Technical clarification : non-extended probes on the stable registers’ values have to be considered in the simulation too Definition: a gadget is glitch-robust 𝒓 -SNI if it is π‘Ÿ - SNI in the β€œglitch - extended” probing model

  20. (Refined) model and security definition 6 𝒒 𝟐 Glitch-extended probes: probing any output of a combinatorial sub- circuit allows the adversary to observe all the sub-circuit inputs Example: π‘ž 1 gives 𝑏, 𝑐 and 𝑑 π‘ž 2 Technical clarification : non-extended probes on the stable registers’ values have to be considered in the simulation too Definition: a gadget is glitch-robust 𝒓 -SNI if it is π‘Ÿ - SNI in the β€œglitch - extended” probing model β‡’ Shares’ fan in of robust gadgets should be minimum

  21. (Refined) model and security definition 6 𝒒 𝟐 Glitch-extended probes: probing any output of a combinatorial sub- circuit allows the adversary to observe all the sub-circuit inputs Example: π‘ž 1 gives 𝑏, 𝑐 and 𝑑 𝒒 πŸ‘ Technical clarification : non-extended probes on the stable registers’ values have to be considered in the simulation too Definition: a gadget is glitch-robust 𝒓 -SNI if it is π‘Ÿ - SNI in the β€œglitch - extended” probing model β‡’ Shares’ fan in of robust gadgets should be minimum β‡’ Outputs of SNI gadgets should be stored in registers

  22. ISW mult. is glitch-robust 𝒓 -SNI in 2 cycles 7 Example with: β€’ 𝑒 = 3 β€’ π‘Ÿ = 2

  23. ISW mult. is glitch-robust 𝒓 -SNI in 2 cycles 7 The adversary can observe: β€’ 12 glitch-extended probes β€’ 𝑣 𝑗,π‘˜ ’s and 𝑑 𝑗 ’s β€’ 3 stable (output) probes 𝑑 𝑗 ’s β‡’ We need to describe a simulator using π‘Ÿ 1 shares/input

  24. ISW mult. is glitch-robust 𝒓 -SNI in 2 cycles 7 β€’ 1 st example: 2 extended probes β€’ G( 𝑣 1,2 ) ≔ 𝑏 1 , 𝑐 2 , 𝑠 1,2 β€’ G 𝑑 1 ≔ 𝑣 1,1 , 𝑣 2,1 , 𝑣 3,1 to simul. with 2 shares/input

Recommend


More recommend