particle flow bayes rule
play

Particle Flow Bayes Rule Xinshi Chen 1* , Hanjun Dai 1* , Le - PowerPoint PPT Presentation

Particle Flow Bayes Rule Xinshi Chen 1* , Hanjun Dai 1* , Le Song 1,2 1 Georgia Tech, 2 Ant Financial (*equal contribution) ICML 2019 Sequential Bayesian Inference 1. Prior distribution () # $ %


  1. Particle Flow Bayes’ Rule Xinshi Chen 1* , Hanjun Dai 1* , Le Song 1,2 1 Georgia Tech, 2 Ant Financial (*equal contribution) ICML 2019

  2. Sequential Bayesian Inference 𝑦 1. Prior distribution 𝜌(𝑦) 𝑝 # 𝑝 $ …… 𝑝 % …… 2. Likelihood function π‘ž(𝑝|𝑦) … π‘ž 𝑦 𝑝 # π‘ž 𝑦 𝑝 #:$ π‘ž 𝑦 𝑝 #:% prior 𝜌(𝑦) 3. Observations 𝑝 # , 𝑝 $ , … , 𝑝 % 𝑝 # 𝑝 $ 𝑝 % arrive sequentially π‘ž 𝑦 𝑝 #:% ∝ π‘ž 𝑦 𝑝 #:%,# π‘ž 𝑝 % 𝑦 Need efficient online update! updated posterior current posterior Likelihood Or prior Sequential Monte Carlo: 4 from prior 𝜌(𝑦) # , … , 𝑦 2 β€’ 𝑂 particles 𝒴 2 = 𝑦 2 Reweight the particles using likelihood β€’ Particle degeneracy problem β€’ (Doucet et al., 2001)

  3. Our Approach: Particle Flow # , … , 𝑦 2 4 } , from prior 𝝆(π’š) β€’ 𝑢 particles 𝒴 2 = {𝑦 2 β€’ Move particles through an ordinary differential equation (ODE) 𝑒𝑦 ; 𝑦 0 = 𝑦 2 and 𝑒𝑒 = 𝑔 𝒴 2 , 𝑝 # , 𝑦 𝑒 , 𝑒 ; = 𝑦(π‘ˆ) ⟹ solution 𝑦 # 𝑦 𝑝 # 𝑝 $ 𝑝 % …… Does a unified flow velocity 𝑔 exist? π‘ž 𝑦 𝑝 #:$ π‘ž 𝑦 𝑝 # prior 𝜌(𝑦) π‘ž 𝑦 𝑝 #:% Does P article F low B ayes’ R ule (PFBR) exist? … 𝑝 # 𝑝 $ 𝑝 % # , … , 𝑦 2 4 } 𝒴 2 = {𝑦 2 # , … , 𝑦 # 4 } 𝒴 # = {𝑦 # # , … , 𝑦 $ 4 } 𝒴 $ = {𝑦 $ B B B A 𝑔 𝒴 # , 𝑝 $ , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 2 , 𝑝 # , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 $ , 𝑝 C , 𝑦(𝑒) 𝑒𝑒 2 2 2

  4. Our Approach: Particle Flow β€’ Move particles to next posterior through an ordinary differential equation (ODE) 𝑒𝑦 ; 𝑦 0 = 𝑦 2 and 𝑒𝑒 = 𝑔 𝒴 2 , 𝑝 # , 𝑦 𝑒 , 𝑒 ; = 𝑦(π‘ˆ) ⟹ solution 𝑦 # 𝑦 𝑝 # 𝑝 $ 𝑝 % …… Does a unified flow velocity 𝑔 exist? π‘ž 𝑦 𝑝 #:$ π‘ž 𝑦 𝑝 # prior 𝜌(𝑦) π‘ž 𝑦 𝑝 #:% Does P article F low B ayes’ R ule (PFBR) exist? … 𝑝 # 𝑝 $ 𝑝 % # , … , 𝑦 2 4 } 𝒴 2 = {𝑦 2 Yes!!! # , … , 𝑦 # 4 } 𝒴 # = {𝑦 # # , … , 𝑦 $ 4 } 𝒴 $ = {𝑦 $ E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ π‘₯ βˆ— 𝜌 𝑦 , π‘ž 𝑝|𝑦 , 𝑦, 𝑒 𝑔: = 𝛼 B B B A 𝑔 𝒴 # , 𝑝 $ , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 2 , 𝑝 # , 𝑦(𝑒) 𝑒𝑒 A 𝑔 𝒴 $ , 𝑝 C , 𝑦(𝑒) 𝑒𝑒 2 2 2

  5. Existence of Particle Flow Bayes’ Rule Langevin dynamics βœ“ density 𝒓 π’š, 𝒖 converges to posterior 𝒒 π’š|𝒑 ✘ stochastic flow 𝑒𝑦 𝑒 = 𝛼 E log 𝜌 𝑦 π‘ž(𝑝|𝑦) 𝑒𝑒 + 2 𝒆𝒙 𝒖 Fokker-Planck Equation + Continuity Equation βœ“ density 𝒓 π’š, 𝒖 converges to posterior 𝒒 π’š|𝒑 deterministic, closed-loop βœ“ deterministic flow 𝑒𝑦 𝑒 = 𝛼 E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ βˆ‡ E log 𝒓(π’š, 𝒖) 𝑒𝑒 ✘ closed-loop flow: depends on 𝒓(π’š, 𝒖) Optimal control theory: closed-loop to open loop βœ“ density 𝒓 π’š, 𝒖 converges to posterior 𝒒 π’š|𝒑 deterministic, open-loop βœ“ deterministic flow E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ π‘₯ βˆ— 𝜌 𝑦 , π‘ž 𝑝|𝑦 , 𝑦, 𝑒 𝑒𝑒 𝑒𝑦 𝑒 = 𝛼 βœ“ open-loop flow

  6. Parameterization The unified flow velocity is in form of: E log 𝜌 𝑦 π‘ž(𝑝|𝑦) βˆ’ π‘₯ βˆ— 𝜌 𝑦 , π‘ž 𝑝|𝑦 , 𝑦, 𝑒 π’ˆ(𝝆 π’š , 𝒒 𝒑 π’š , π’š, 𝒖): = 𝛼 𝑢 π’†π’š 𝟐 𝝔 π’š 𝒐 , 𝒑, π’š 𝒖 , 𝒖 𝒆𝒖 = π’ˆ 𝓨, 𝒑, π’š 𝒖 , 𝒖 ≔ π’Š 𝑢 Z 𝒐\𝟐 Deep set π’Š neural networks

  7. Experiment 1: Multimodal Posterior Gaussian Mixture Model β€’ prior 𝑦 # , 𝑦 $ ∼ π’ͺ 0,1 observations o|𝑦 # , 𝑦 $ ∼ # $ π’ͺ 𝑦 # , 1 + # $ π’ͺ(𝑦 # + 𝑦 $ , 1) β€’ β€’ With 𝑦 # , 𝑦 $ = (1, βˆ’2) , the resulting posterior 𝒒(π’š|𝒑 𝟐 , … , 𝒑 𝒏 ) will have two modes: βˆ’ 3 βˆ’ 3 βˆ’ 3 βˆ’ 4 x 10 x 10 x 10 x 10 5 14 3 0.018 3 10 3 2.2 3 3 4 2 9 0.016 2 12 2 2 2 3 1.8 8 0.014 2 1.6 10 1 7 1 1 1 0.012 1 1.4 2 6 0 0 8 0 1.2 0 0.01 0 5 βˆ’ 1 1 0.008 6 βˆ’ 1 4 βˆ’ 1 βˆ’ 1 βˆ’ 1 βˆ’ 2 0.8 0.006 3 βˆ’ 3 0.6 1 4 βˆ’ 2 βˆ’ 2 βˆ’ 2 βˆ’ 2 0.004 2 βˆ’ 4 0.4 βˆ’ 5 2 βˆ’ 3 βˆ’ 3 0.2 βˆ’ 3 1 βˆ’ 3 0.002 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 βˆ’ 2 βˆ’ 1.5 βˆ’ 1 βˆ’ 0.5 0 0.5 1 1.5 2 (a) True posterior (d) Gibbs Sampling (e) One-pass SMC (b) Stochastic Variational (c) Stochastic Gradient Inference Langevin Dynamics

  8. Experiment 1: Multimodal Posterior PFBR vs one-pass SMC Visualization of the evolution of posterior density from left to right.

  9. Experiment 2: Efficiency in #Particles Our Approach Comparison to SMC and ASMC (Autoencoding SMC, Filtering Variational Objectives, and Variational SMC) (Le et al., 2018; Maddison et al., 2017; Naesseth et al., 2018).

  10. Thanks! Poster: Pacific Ballroom #218, Tue, 06:30 PM Contact: xinshi.chen@gatech.edu

Recommend


More recommend