Particle Flow Bayesβ Rule Xinshi Chen 1* , Hanjun Dai 1* , Le Song 1,2 1 Georgia Tech, 2 Ant Financial (*equal contribution) ICML 2019
Sequential Bayesian Inference π¦ 1. Prior distribution π(π¦) π # π $ β¦β¦ π % β¦β¦ 2. Likelihood function π(π|π¦) β¦ π π¦ π # π π¦ π #:$ π π¦ π #:% prior π(π¦) 3. Observations π # , π $ , β¦ , π % π # π $ π % arrive sequentially π π¦ π #:% β π π¦ π #:%,# π π % π¦ Need efficient online update! updated posterior current posterior Likelihood Or prior Sequential Monte Carlo: 4 from prior π(π¦) # , β¦ , π¦ 2 β’ π particles π΄ 2 = π¦ 2 Reweight the particles using likelihood β’ Particle degeneracy problem β’ (Doucet et al., 2001)
Our Approach: Particle Flow # , β¦ , π¦ 2 4 } , from prior π(π) β’ πΆ particles π΄ 2 = {π¦ 2 β’ Move particles through an ordinary differential equation (ODE) ππ¦ ; π¦ 0 = π¦ 2 and ππ’ = π π΄ 2 , π # , π¦ π’ , π’ ; = π¦(π) βΉ solution π¦ # π¦ π # π $ π % β¦β¦ Does a unified flow velocity π exist? π π¦ π #:$ π π¦ π # prior π(π¦) π π¦ π #:% Does P article F low B ayesβ R ule (PFBR) exist? β¦ π # π $ π % # , β¦ , π¦ 2 4 } π΄ 2 = {π¦ 2 # , β¦ , π¦ # 4 } π΄ # = {π¦ # # , β¦ , π¦ $ 4 } π΄ $ = {π¦ $ B B B A π π΄ # , π $ , π¦(π’) ππ’ A π π΄ 2 , π # , π¦(π’) ππ’ A π π΄ $ , π C , π¦(π’) ππ’ 2 2 2
Our Approach: Particle Flow β’ Move particles to next posterior through an ordinary differential equation (ODE) ππ¦ ; π¦ 0 = π¦ 2 and ππ’ = π π΄ 2 , π # , π¦ π’ , π’ ; = π¦(π) βΉ solution π¦ # π¦ π # π $ π % β¦β¦ Does a unified flow velocity π exist? π π¦ π #:$ π π¦ π # prior π(π¦) π π¦ π #:% Does P article F low B ayesβ R ule (PFBR) exist? β¦ π # π $ π % # , β¦ , π¦ 2 4 } π΄ 2 = {π¦ 2 Yes!!! # , β¦ , π¦ # 4 } π΄ # = {π¦ # # , β¦ , π¦ $ 4 } π΄ $ = {π¦ $ E log π π¦ π(π|π¦) β π₯ β π π¦ , π π|π¦ , π¦, π’ π: = πΌ B B B A π π΄ # , π $ , π¦(π’) ππ’ A π π΄ 2 , π # , π¦(π’) ππ’ A π π΄ $ , π C , π¦(π’) ππ’ 2 2 2
Existence of Particle Flow Bayesβ Rule Langevin dynamics β density π π, π converges to posterior π π|π β stochastic flow ππ¦ π’ = πΌ E log π π¦ π(π|π¦) ππ’ + 2 ππ π Fokker-Planck Equation + Continuity Equation β density π π, π converges to posterior π π|π deterministic, closed-loop β deterministic flow ππ¦ π’ = πΌ E log π π¦ π(π|π¦) β β E log π(π, π) ππ’ β closed-loop flow: depends on π(π, π) Optimal control theory: closed-loop to open loop β density π π, π converges to posterior π π|π deterministic, open-loop β deterministic flow E log π π¦ π(π|π¦) β π₯ β π π¦ , π π|π¦ , π¦, π’ ππ’ ππ¦ π’ = πΌ β open-loop flow
Parameterization The unified flow velocity is in form of: E log π π¦ π(π|π¦) β π₯ β π π¦ , π π|π¦ , π¦, π’ π(π π , π π π , π, π): = πΌ πΆ ππ π π π π , π, π π , π ππ = π π¨, π, π π , π β π πΆ Z π\π Deep set π neural networks
Experiment 1: Multimodal Posterior Gaussian Mixture Model β’ prior π¦ # , π¦ $ βΌ πͺ 0,1 observations o|π¦ # , π¦ $ βΌ # $ πͺ π¦ # , 1 + # $ πͺ(π¦ # + π¦ $ , 1) β’ β’ With π¦ # , π¦ $ = (1, β2) , the resulting posterior π(π|π π , β¦ , π π ) will have two modes: β 3 β 3 β 3 β 4 x 10 x 10 x 10 x 10 5 14 3 0.018 3 10 3 2.2 3 3 4 2 9 0.016 2 12 2 2 2 3 1.8 8 0.014 2 1.6 10 1 7 1 1 1 0.012 1 1.4 2 6 0 0 8 0 1.2 0 0.01 0 5 β 1 1 0.008 6 β 1 4 β 1 β 1 β 1 β 2 0.8 0.006 3 β 3 0.6 1 4 β 2 β 2 β 2 β 2 0.004 2 β 4 0.4 β 5 2 β 3 β 3 0.2 β 3 1 β 3 0.002 β 2 β 1.5 β 1 β 0.5 0 0.5 1 1.5 2 β 2 β 1.5 β 1 β 0.5 0 0.5 1 1.5 2 β 2 β 1.5 β 1 β 0.5 0 0.5 1 1.5 2 β 2 β 1.5 β 1 β 0.5 0 0.5 1 1.5 2 β 2 β 1.5 β 1 β 0.5 0 0.5 1 1.5 2 (a) True posterior (d) Gibbs Sampling (e) One-pass SMC (b) Stochastic Variational (c) Stochastic Gradient Inference Langevin Dynamics
Experiment 1: Multimodal Posterior PFBR vs one-pass SMC Visualization of the evolution of posterior density from left to right.
Experiment 2: Efficiency in #Particles Our Approach Comparison to SMC and ASMC (Autoencoding SMC, Filtering Variational Objectives, and Variational SMC) (Le et al., 2018; Maddison et al., 2017; Naesseth et al., 2018).
Thanks! Poster: Pacific Ballroom #218, Tue, 06:30 PM Contact: xinshi.chen@gatech.edu
Recommend
More recommend