paraconsistent computational logic
play

Paraconsistent Computational Logic Andreas Schmidt Jensen and Jrgen - PowerPoint PPT Presentation

Paraconsistent Computational Logic Andreas Schmidt Jensen and Jrgen Villadsen Algorithms and Logic Section, DTU Informatics, Denmark 8th Scandinavian Logic Symposium 20-21 August 2012, Roskilde University, Denmark Abstract. In classical logic


  1. Paraconsistent Computational Logic Andreas Schmidt Jensen and Jørgen Villadsen Algorithms and Logic Section, DTU Informatics, Denmark 8th Scandinavian Logic Symposium 20-21 August 2012, Roskilde University, Denmark Abstract. In classical logic everything follows from inconsistency and this makes classical logic problematic in areas of computer science where contradictions seem unavoidable. We describe a many-valued paraconsistent logic, discuss the truth tables and include a small case study.

  2. A Paraconsistent Logic We consider the propositional fragment of a higher-order paraconsistent logic. ∆ = {• , ◦} , the two classical determinate truth values for truth and falsity, respectively. ∇ = { � , �� , ��� , . . . } , a countably infinite set of indeterminate truth values. The only designated truth value • yields the logical truths. None of the indeterminate truth values imply the others and there is no specific ordering of the indeterminate truth values. 2

  3. Definitions I  • if [ [ ϕ ] ] = ◦ ⊤ ⇔ ¬⊥  [ [ ¬ ϕ ] ] = ◦ if [ [ ϕ ] ] = • ⊥ ⇔ ¬⊤  [ [ ϕ ] ] otherwise  [ [ ϕ ] ] if [ [ ϕ ] ] = [ [ ψ ] ] ϕ ⇔ ϕ ∧ ϕ    [ [ ψ ] ] if [ [ ϕ ] ] = • ψ ⇔ ⊤ ∧ ψ [ [ ϕ ∧ ψ ] ] = [ [ ϕ ] ] if [ [ ψ ] ] = • ϕ ⇔ ϕ ∧ ⊤    ◦ otherwise Abbreviations: ⊥ ≡ ¬⊤ ϕ ∨ ψ ≡ ¬ ( ¬ ϕ ∧ ¬ ψ ) 3

  4. Definitions II � • if [ [ ϕ ] ] = [ [ ψ ] ] [ [ ϕ ⇔ ψ ] ] = ◦ otherwise  • if [ [ ϕ ] ] = [ [ ψ ] ] ⊤ ⇔ ϕ ↔ ϕ    [ [ ψ ] ] if [ [ ϕ ] ] = • ⇔ ⊤ ↔ ψ ψ     [ [ ϕ ] ] if [ [ ψ ] ] = • ϕ ⇔ ϕ ↔ ⊤ [ [ ϕ ↔ ψ ] ] = [ [ ¬ ψ ] ] if [ [ ϕ ] ] = ◦ ¬ ψ ⇔ ⊥ ↔ ψ    [ [ ¬ ϕ ] ] if [ [ ψ ] ] = ◦ ¬ ϕ ⇔ ϕ ↔ ⊥     ◦ otherwise Abbreviations: ϕ ⇒ ψ ≡ ϕ ⇔ ϕ ∧ ψ ϕ → ψ ≡ ϕ ↔ ϕ ∧ ψ ✷ ϕ ≡ ϕ = ⊤ ∼ ϕ ≡ ¬ ✷ ϕ 4

  5. Truth Tables I Although we have a countably infinite set of truth value we can investigate the logic by truth tables since the indeterminate truth values are not ordered with respect to truth content. ∧ • ◦ ∨ • ◦ ¬ � �� � �� • • ◦ • • • • • • ◦ � �� ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • � �� ◦ ◦ • • � � � � � � � � �� ◦ ◦ �� • �� • �� �� �� �� �� 5

  6. Truth Tables II ⇔ • ◦ ⇒ • ◦ � �� � �� ✷ • • ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ • • • • ◦ ◦ ◦ ◦ • ◦ • ◦ • ◦ ◦ � � � ◦ ◦ ◦ • • ◦ ◦ • ◦ �� �� �� ↔ • ◦ → • ◦ ∼ � �� � �� • • ◦ • • ◦ • ◦ � �� � �� ◦ ◦ • ◦ • • • • ◦ • � �� • ◦ • • • � � � � � � � �� �� ◦ • • �� �� • • �� �� �� 6

  7. Indeterminate Truth Values I The required number of indeterminacies corresponds to the number of propositions in a given formula. A larger number of indeterminacies weakens the logic. ] = �� would For an atomic formula P , ∇ = { � } suffices, because [ [ P ] ] = � when we consider logical truths. not be different from [ [ P ] 7

  8. Indeterminate Truth Values II Contraposition: P → Q ↔ ¬ Q → ¬ P The formula holds in a logic with a single indeterminacy. Counter-example for two indeterminacies: P → Q ↔ ¬ Q → ¬ P ◦ � � �� �� �� �� � � Having ∇ = { � , �� , ��� } does not weaken the logic further. 8

  9. Case Study I Consider an agent with a set of beliefs (0) and rules (1-2): 0. P ∧ Q ∧ ¬ R 1. P ∧ Q → R 2. R → S ( P ∧ Q ∧ ¬ R ) ∧ ( P ∧ Q → R ) ⇒ . . . • • • • • ◦ ◦ • • • ◦ ◦ • ( P ∧ Q ∧ ¬ R ) ∧ ( P ∧ Q → R ) ⇒ R � • ◦ • � • � ◦ ◦ � � � � � ( P ∧ Q ∧ ¬ R ) ∧ ✷ ( P ∧ Q → R ) ⇒ R • � � • ◦ ◦ ◦ • � ◦ • ◦ � � � 9

  10. Case Study II We let ✄ XYZ P mean that P follows from the agents beliefs and rules X , Y and Z , where rules are boxed, so ✄ 012 Q ∧ R considers the logical truth of the formula: ( P ∧ Q ∧ ¬ R ) ∧ ✷ ( P ∧ Q → R ) ∧ ✷ ( R → S ) ⇒ Q ∧ R � �� � � �� � � �� � 2 0 1 In particular: 012 ¬ P 012 ¬ Q 012 ¬ S � ✄ � ✄ � ✄ 012 R 012 ¬ R 012 S ✄ ✄ ✄ 10

  11. Conclusions We have defined an infinite-valued paraconsistent logic using semantic clauses and motivated by key equalities. Only a finite number of truth values need to be considered for a given formula. The logic allows agents to reason using inconsistent beliefs and rules without entailing everything. 11

  12. References [1] D. Batens, C. Mortensen, G. Priest and J. Van-Bengedem (editors). Frontiers in Paraconsistent Logic . Research Studies Press, 2000. [2] H. Decker, J. Villadsen and T. Waragai (editors). International Workshop on Paraconsistent Computational Logic . Volume 95 of Roskilde University, Computer Science, Technical Reports, 2002. [3] S. Gottwald. A Treatise on Many-Valued Logics . Research Studies Press, 2001. [4] J. Villadsen. A Paraconsistent Higher Order Logic . Pages 38–51 in B. Buchberger and J. A. Campbell (editors), Springer Lecture Notes in Computer Science 3249, 2004. [5] J. Villadsen. Supra-Logic: Using Transfinite Type Theory with Type Variables for Paraconsistency . Journal of Applied Non-Classical Logics, 15(1):45–58, 2005. [6] J. Villadsen. Infinite-Valued Propositional Type Theory for Semantics . Pages 277–297 in J.-Y. B´ eziau and A. Costa-Leite (editors), Dimensions of Logical Concepts, Unicamp Cole¸ c. CLE 54, 2009. 12

Recommend


More recommend