Paper ID SGD5451 EMD-Prony for phasor estimation in harmonic and noisy conditions Jalal Khodaparast Ghadikolaei Olav Bjarte Fosso Marta Molinas Postdoctoral researcher Professor Professor Marta.molinas@ntnu.no Jalal.khodaparast@ntnu.no Olav.fosso@ntnu.no Signal Analysis Research Lab
Phasor Estimation Empirical Prony Mode Algorithm Decomposition (EMD) EMD-Prony Denoising Order of signal Prony 2
First-Order Prony algorithm 1 j 2 f t * j 2 f t Main signal s ( t ) p e p e 1 1 2 p phasor j ae 1 1 s [ 0 ] . . . . . First step of . n n Prony Z Z p . 1 1 . . . * p . . . s [ n ] . . . N 1 ( N 1 ) s [ N 1 ] Z Z 1 1 Second step of 2 F z ( z Z ).( z Z ) z a z a Prony 1 1 1 2 s [ 2 ] s [ 0 ] s [ 1 ] s [ 3 ] s [ 1 ] y [ 2 ] s [ 4 ] s [ 2 ] s [ 3 ] a . . . 1 . a Third step of Prony 2 . . . . . . s [ N 1 ] s [ N 2 ] s [ N 3 ] 3
Frequency analysis of Prony 10 jk t s ( t ) e 0 k 1 Empirical Mode Decomposition (EMD) A time domain algorithm for separating a non-linear and non-stationary signal into its individual components. Sifting process Intrinsic Mode Function (IMF) stopping index L s ( t ) R IMF k k 1 4 Determination of Prony ’ s order Hurst Index
Mode mixing in EMD s ( t ) s ( t ) s ( t ) 1 2 s ( t ) cos( 2 t ) 1 s ( t ) a cos( 2 t ) 2 Decomposition procedure is done with different noisy data and Ensemble EMD (EEMD) finally mean (ensemble) of the corresponding IMFs provides the final result. Detection of Mode mixing s ( t ) cos( 2 50 t ) 0 . 2 cos( 2 300 t ) t 0 . 15 s ( t ) cos( 2 50 t ) 0 . 2 cos( 2 90 t ) t 0 . 15 5
Simulation Results Denoising using EMD s ( t ) cos( 2 f t 0 . 5 ) w ( t ) 0 2 3 f 50 10 0 Hurst Index HI_1=0.3576 HI_2=0.2743 HI_3=0.2022 HI_4=0.3010 HI_5=0.7347 Method Amplitude Error Phase Error Prony 0.2851 0.2601 6 EMD-Prony 0.0171 0.0157
Simulation Results Prony's model order EMD performance s ( t ) cos( 2 f t 0 . 5 ) 0 . 3 cos( 2 ( 5 f ) t ) 0 . 15 cos( 2 ( 8 f ) t ) 0 0 0 Method Amplitude Error Phase Error Prony 0.4636 1.4553 EMD-Prony 5 ˣ 10 -8 4.8 ˣ 10 -7 7
Simulation Results Prony's model order EEMD performance s ( t ) cos( 2 f t 0 . 5 ) 0 . 3 cos( 2 ( 5 f ) t ) 0 . 15 cos( 2 ( 5 . 6 f ) t ) 0 0 0 Method Amplitude Error Phase Error Hurst Index Prony 0.5845 1.2230 IMF1=0.1739 IMF2=0.2993 EMD-Prony 3.4 ˣ 10 -7 3.02 ˣ 10 -6 IMF3=0.2022 IMF4=0.5721 IMF5=0.6468 IMF6=0.7927 8
9
Recommend
More recommend