Hypercubic Networks Charles E. Leiserson 6.895 Theory of Parallel Systems November 2, 2003 1 “Ideal” Parallel Computer P M P M P M … … P M 2 1
“Ideal” Distributed-Memory Parallel Computer P+M P+M P+M P+M P+M P+M P+M P+M 3 Interconnection Networks linear array binary tree 2D mesh 4 2
Hypercube d = 0 d = 1 d = 2 N = 1 N = 2 N = 4 d = 3 d = 4 5 N = 8 N = 16 Hypercube 110 111 010 011 100 101 000 001 6 3
Cube-Connected Cycles 7 Butterfly (FFT) Network 0 1 2 0 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 8 4
Butterflies 9 Decomposing a Butterfly 10 5
Decomposing a Butterfly 11 Decomposing a Butterfly 12 6
Decomposing a Butterfly 13 Decomposing a Butterfly II 14 7
Decomposing a Butterfly II 15 Decomposing a Butterfly II 16 8
Decomposing a Butterfly II 17 Decomposing a Butterfly II 18 9
Decomposing a Butterfly II 19 Decomposing a Butterfly II 20 10
Routing on a Butterfly 0 1 2 0 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 21 Tree in Butterfly 0 1 2 0 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 22 11
Tree in Butterfly 0 1 2 0 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 23 Beneš Network 24 12
Decomposing a Beneš Network n /2 Beneš n /2 Beneš 25 Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 26 13
Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 27 Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 28 14
Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 29 Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 30 15
Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 31 Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 32 16
Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 33 Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 34 17
Routing on a Beneš Network 5 0 0 1 7 2 4 3 6 4 2 5 3 6 1 7 35 18
Recommend
More recommend