on magic hypercubes
play

ON -MAGIC HYPERCUBES RINOVIA SIMANJUNTAK rino@math.itb.ac.id - PowerPoint PPT Presentation

ON -MAGIC HYPERCUBES RINOVIA SIMANJUNTAK rino@math.itb.ac.id PALTON ANUWIKSA AKIHIRO MUNEMASA (TOHOKU UNIVERSITY) COMBINATORIAL MATHEMATICS RESEARCH GROUP FACULTY OF MATHEMATICS AND NATURAL SCIENCES INSTITUT TEKNOLOGI BANDUNG 31 st


  1. ON ๐ธ -MAGIC HYPERCUBES RINOVIA SIMANJUNTAK rino@math.itb.ac.id PALTON ANUWIKSA AKIHIRO MUNEMASA (TOHOKU UNIVERSITY) COMBINATORIAL MATHEMATICS RESEARCH GROUP FACULTY OF MATHEMATICS AND NATURAL SCIENCES INSTITUT TEKNOLOGI BANDUNG 31 st Cumberland Conference, 18-19 May 2019, UCF partially supported by: JSPS Open Partnership Joint Research Project 2017-2019 and RISTEKDIKTI Fundamental Research Grant 2018-2020

  2. Magic Labeling: The Beginning Definition Sedlรกฤek (1963) A magic labeling is a one-to-one mapping ๐‘”: ๐น โ†’ โ„ + with the property that there is a constant ๐‘™ such that at any vertex ๐‘ฆ เท ๐‘” ๐‘ฆ๐‘ง = ๐‘™ ๐‘งโˆˆ๐‘‚(๐‘ฆ) where ๐‘‚(๐‘ฆ) is the set of vertices adjacent to ๐‘ฆ . Definition Kotzig and Rosa (1970) An edge-magic total labeling is a bijection ๐‘”: ๐‘Š โˆช ๐น โ†’ {1,2, โ€ฆ , ๐‘Š โˆช ๐น } with the property that there is a constant k such that at any edge ๐‘ฆ๐‘ง , ๐‘” ๐‘ฆ + ๐‘” ๐‘ฆ๐‘ง + ๐‘”(๐‘ง) = ๐‘™ . A graph admitting edge-magic total labeling is called edge-magic.

  3. Magic Labeling: Open Problem and Conjecture Not all graphs are edge-magic. The edge-magic property is not monotone with respect to the subgraph relation. Conjecture Kotzig & Rosa (1970) All trees are edge-magic. Question Erdล‘s (Kalamazoo 1996) What is the maximum number of edges โ„ณ(๐‘œ) in an edge-magic graph of order ๐‘œ ? 7 ๐‘œ 2 + ๐‘ƒ(๐‘œ) โ‰ค โ„ณ(๐‘œ) โ‰ค (0.489 โ€ฆ + ๐‘ 1 )๐‘œ 2 Pikhurko (2006) 2

  4. ๐ธ -Magic Labeling Definition Oโ€™Neal & Slater (2011) Let ๐‘’ be the diameter of a graph ๐ป and ๐ธ โŠ† {0,1,2, โ€ฆ , ๐‘’} be a set of distances in graph ๐ป . A bijection ๐‘” โˆถ ๐‘Š โ†’ {1, 2, โ€ฆ , ๐‘Š } is said to be a ๐ธ -magic labeling if there exists a magic constant ๐‘™ such that for any vertex ๐‘ฆ, the weight ๐‘ฅ(๐‘ฆ) = ฯƒ ๐‘งโˆˆ๐‘‚ ๐ธ (๐‘ฆ) ๐‘” ๐‘ง = ๐‘™ , where ๐‘‚ ๐ธ (๐‘ฆ) = {๐‘ง ๏ƒŽ ๐‘Š |๐‘’(๐‘ฆ, ๐‘ง) ๏ƒŽ ๐ธ} . A graph admitting a ๐ธ -magic labeling is called ๐ธ -magic. If ๐ธ = {1} , a ๐ธ -magic labeling is known as a distance magic labeling. Vilfred (1994) If ๐ธ = {0,1} , a ๐ธ -magic labeling is called a closed distance magic labeling. Beena (2009)

  5. Smallest Distance Magic Connected Graphs

  6. Distance Magic Graphs are Rare Catalogue of distance magic graphs up to 9 vertices. Yasin & RS (2015) # non-isomorphic graphs # non-isomorphic n distance magic graphs 1 1 1 2 2 1 3 4 2 4 11 2 5 34 2 6 156 2 7 1044 4 8 12346 6 9 275668 6

  7. Some Observations ๏‚จ There is no {0} -magic graph. ๏‚จ A regular graph with odd degree is not {1} -magic (distance magic). ๏‚จ All graphs are {0,1, โ€ฆ , ๐‘’} -magic. ๏‚จ A graph is ๐ธ -magic if and only if it is 0,1, โ€ฆ , ๐‘’ \๐ธ - magic. ๏‚จ A graph is {1} -magic (distance magic) if and only if its complement is {0,1} -magic (closed distance magic). ๏‚จ Let ๐ธ 1 and ๐ธ 2 be two disjoint sets of distances. If a graph is both ๐ธ 1 -magic and ๐ธ 2 -magic then it is also ๐ธ 1 โˆช ๐ธ 2 -magic.

  8. The ๐ธ -Magic Constant is Unique Definition Oโ€™Neal & Slater (2013) A function g : V โ†’ [0, 1] is said to be a ๐ธ -neighborhood fractional dominating function if for every vertex v, ฯƒ ๐‘ฃโˆˆ๐‘‚ ๐ธ (๐‘ค) ๐‘•(๐‘ค) โ‰ฅ 1 . The ๐ธ -neighborhood fractional domination number of a graph is denoted by ๐›ฟ ๐‘”๐‘ข (๐ป; ๐ธ) and is defined as min ฯƒ ๐‘คโˆˆ๐‘Š(๐ป) ๐‘• ๐‘ค |๐‘• is a D โˆ’neigborhood fractional dominating function . Theorem Oโ€™Neal & Slater (2013) If a graph G is ๐ธ -magic, then its magic constant is ๐‘™ = ๐‘œ(๐‘œ + 1) 2๐›ฟ ๐‘”๐‘ข (๐ป; ๐ธ)

  9. Distance Regular Graphs Let ๐ป ๐‘— ๐‘ฃ denote the set of vertices at distance ๐‘— from ๐‘ฃ . A connected graph ๐ป of diameter ๐‘’ is distance-regular if it is ๐‘  - regular and there exist positive integers ๐‘ 0 = ๐‘  , ๐‘ 1 , โ€ฆ , ๐‘ ๐‘’โˆ’1 , ๐‘‘ 1 = 1 , ๐‘‘ 2 , โ€ฆ , ๐‘‘ ๐‘’ , such that for every pair of vertices ๐‘ฃ and ๐‘ค where ๐‘’ ๐‘ฃ, ๐‘ค = ๐‘˜ , there are exactly ๐‘‘ ๐‘˜ neighbors of ๐‘ฃ in ๐ป ๐‘˜โˆ’1 ๐‘ค and exactly ๐‘ ๐‘˜ neighbors of ๐‘ฃ in ๐ป ๐‘˜+1 ๐‘ค . ๐‘‘ ๐‘˜ ๐‘ฃ ๐‘˜ โˆ’ 1 ๐‘˜ ๐‘ ๐‘˜ + 1 ๐‘˜ ๐‘ค The array ๐‘ , ๐‘ 1 , โ€ฆ , ๐‘ ๐‘’โˆ’1 ; 1, ๐‘‘ 2 ,โ€ฆ, ๐‘‘ ๐‘’ is called the intersection array of ๐ป .

  10. ๐ธ -Magic Strongly-Regular Graphs Theorem Anholcer, S. Cichacz, and I. Peterin (2016) RS and Anuwiksa (2018+) The only ๐ธ -magic strongly-regular graphs are the complete multipartite graphs ๐ผ ๐‘œโˆ’๐‘ , ๐‘œ ๐‘œโˆ’๐‘  where 1) ๐‘œ ๐‘œ โˆ’ ๐‘  is even or both ๐‘œ โˆ’ ๐‘  and ๐‘œโˆ’๐‘  are odd, for ๐ธ = {1} or ๐ธ = {0,2} , the complete graphs ๐ฟ ๐‘œ , for ๐ธ = {0,1} or ๐ธ = 2) {2} .

  11. {1} -Magic Distance Regular Graphs of Diameter 3 A distance- ๐‘™ graph of a graph ๐ป is a graph with the same vertex set as ๐ป and edge set consisting of the pairs of vertices that lie a distance ๐‘™ apart. A distance-regular graph is primitive if all of its distance- ๐‘™ graphs are connected. Theorem RS and Anuwiksa (2018+) Let ๐ป be a distance-regular graph of diameter 3 . If ๐ป is distance magic then ๐ป is primitive. Note that in the BCN table [Brouwer, Cohen, Neumaier (1989)] of distance-regular graphs on at most 4096 vertices, there are 4 feasible primitive graphs: Perkel graph (on 57 vertices), unitary non-isotropic graph (525), Moscow-Soicher graph (672), and Brouwer graph (729).

  12. The Tridiagonal Matrix of a Distance Regular Graph Theorem Biggs (1996) If ๐ป is a distance-regular graph of diameter ๐‘’ and intersection array ๐‘™, ๐‘ 1 , โ€ฆ , ๐‘ ๐‘’โˆ’1 ; 1, ๐‘‘ 2 ,โ€ฆ, ๐‘‘ ๐‘’ , then ๐ป has ๐‘’ +1 distinct eigenvalues which are the eigenvalues of the tridiagonal (๐‘’ + 1) ร— (๐‘’ + 1) matrix 0 1 0 โ‹ฏ 0 ๐‘  ๐‘ 1 ๐‘‘ 2 ๐‘ 2 ๐‘‘ 3 0 ๐‘ 1 โ‹ฎ ๐ถ = ๐‘ 2 ๐‘ 3 โ‹ฑ โ‹ฑ ๐‘‘ ๐‘’ โ‹ฎ โ‹ฑ ๐‘ ๐‘’โˆ’1 ๐‘ ๐‘’ 0 โ‹ฏ

  13. The Tridiagonal Matrix Let ๐ป be a distance-regular graph of diameter ๐‘’ . For a vertex ๐‘ฆ and a labeling of vertices ๐‘š , ๐‘‡ ๐‘— ๐‘ฆ = ฯƒ ๐‘งโˆˆ๐ป ๐‘— (๐‘ฆ) ๐‘š(๐‘ง) , the sum of labels of all vertices in ๐ป ๐‘— ๐‘ฆ . It is clear that ๐‘‡ 0 ๐‘ฆ = ๐‘š(๐‘ฆ) . ๐‘’ . The vector ๐’•(๐’š) is ๐‘‡ ๐‘— ๐‘ฆ ๐‘—=0 ๐‘’ The vector ๐’ is |๐ป ๐‘— ๐‘ฆ | ๐‘—=0 . We suppress the reference to ๐‘ฆ since |๐ป ๐‘— ๐‘ฆ | is independent of the choice of a vertex ๐‘ฆ . Lemma If ๐‘š is a distance magic labeling with magic constant ๐‘™โ€ฒ , then ๐ถ๐’• ๐’š = ๐‘™ โ€ฒ ๐’. If ๐‘š is a closed distance magic labeling with magic constant ๐‘™โ€ฒ , then (๐ฝ + ๐ถ)๐’• ๐’š = ๐‘™ โ€ฒ ๐’.

  14. Antipodal Double Cover A distance-regular graph ๐ป of diameter ๐‘’ is called an antipodal double cover if ๐ป ๐‘’ (๐‘ฆ) = 1 for some (and hence all) ๐‘ฆ โˆˆ ๐‘Š(๐ป) . The unique vertex in ๐ป ๐‘’ (๐‘ฆ) is called the antipode of ๐‘ฆ and denoted by ๐‘ฆโ€ฒ . Suppose that ๐‘š is a distance magic labeling of ๐ป with magic constant ๐‘™โ€ฒ . ๐‘™ โ€ฒ For a vertex ๐‘ฆ in ๐ป , we have ๐‘™ โ€ฒ ๐’ = ๐ถ๐’• ๐’š = ๐ถ๐’• ๐’šโ€ฒ = ๐’” ๐ถ๐’ . Thus ๐’• ๐’š โˆ’ ๐’• ๐’š โ€ฒ โˆˆ Ker ๐ถ , which means Ker ๐ถ has a basis of the form 1 . And so ๐‘š ๐‘ฆ + ๐‘š ๐‘ฆ โ€ฒ is a constant independent of ๐‘ฆ . โ‹ฎ โˆ’1 Consequently, for every ๐‘ฆ , ๐‘‡ ๐‘˜ ๐‘ฆ + ๐‘‡ ๐‘’โˆ’๐‘˜ ๐‘ฆ = ฯƒ ๐‘งโˆˆ๐ป ๐‘˜ (๐‘ฆ) ๐‘š ๐‘ง + ๐‘š ๐‘งโ€ฒ is a constant. Theorem Let ๐ป be a distance-regular graph of diameter ๐‘’ which is an antipodal double cover. If ๐‘š is a distance magic labeling or a closed distance magic labeling of ๐ป then ๐‘š is also {๐‘˜, ๐‘’ โˆ’ ๐‘˜} โˆ’ magic for all ๐‘˜ .

  15. Bipartite Antipodal Double Cover If ๐ป is bipartite, then Ker ๐ถ โ‰  0 implies that ๐‘’ is even. Recursively comparing entries of ๐ถ๐’• ๐’š = ๐‘™ โ€ฒ ๐’ , there exist constants ๐‘ and ๐‘ such that ๐‘š(๐‘ฆโ€ฒ) = ๐‘ + ๐‘๐‘š(๐‘ฆ) . More explicitly, ๐‘ = (โˆ’1) ๐‘’/2 . Switching the role of ๐‘ฆ and ๐‘ฆโ€ฒ , ๐‘š(๐‘ฆ) = ๐‘ + ๐‘๐‘š(๐‘ฆโ€ฒ) . This forces ๐‘ = โˆ’1 , and ๐‘’ โ‰ก 2 ๐‘›๐‘๐‘’4 . Theorem Let ๐ป be a bipartite distance-regular graph which is an antipodal double cover with diameter ๐‘’ . If ๐ป has distance magic labeling then ๐‘’ โ‰ก 2 ๐‘›๐‘๐‘’4 . Corollaries ๏‚จ Hadamard graphs are not distance magic. ๏‚จ For ๐‘œ โ‰ข 2(๐‘›๐‘๐‘’4) , the hypercube ๐‘… ๐‘œ is not distance magic. Cichacz, Froncek, Krop, Raridan (2016) Theorem Gregor and Kovรกล™ (2013) The hypercube ๐‘… ๐‘œ is distance magic if and only if ๐‘œ โ‰ก 2(๐‘›๐‘๐‘’4) .

  16. Many Labelings from One Theorem Let ๐ป be a distance-regular graph of diameter ๐‘’ and let ๐ธ โŠ† {0,1,2, โ€ฆ , ๐‘’} be a non-empty set of distances. If ๐ป admits a distance magic labeling ๐‘š then ๐‘š is either ๐ธ -magic or (๐›ฝ, ๐œ€) โˆ’ ๐ธ - antimagic for some ๐›ฝ, ๐œ€ . Morever, if ๐ป is bipartite, then ๐‘š is ๐ธ -magic for all non-empty ๐ธ โŠ† {1,3,5, โ€ฆ } . Theorem If ๐‘œ โ‰ก 2(๐‘›๐‘๐‘’4) then there exists a ๐ธ -magic labeling of the hypercube ๐‘… ๐‘œ whenever ๐ธ is of the form ๐น โˆช แˆซ ๐‘—, ๐‘œ โˆ’ ๐‘— , ๐‘—โˆˆ๐ฝ ๐‘œ where ๐น โŠ† 1,3,5, โ€ฆ , ๐ฝ โŠ† {0,1, โ€ฆ , 2 } , and ๐น โˆฉ ๐‘—, ๐‘œ โˆ’ ๐‘— = โˆ… (๐‘— โˆˆ ๐ฝ) . Open Problem Are these the only ๐ธ s for which the hypercube ๐‘… ๐‘œ , ๐‘œ โ‰ก 2(๐‘›๐‘๐‘’4) , is ๐ธ - magic?

Recommend


More recommend