overview of jet physics results from alice
play

Overview of jet physics results from ALICE Filip Krizek on behalf - PowerPoint PPT Presentation

Overview of jet physics results from ALICE Filip Krizek on behalf of the ALICE collaboration Nuclear Physics Institute of CAS krizek@ujf.cas.cz February 2019 Jets in heavy-ion collisions Hard scattered partons produce collimated sprays of


  1. Overview of jet physics results from ALICE Filip Krizek on behalf of the ALICE collaboration Nuclear Physics Institute of CAS krizek@ujf.cas.cz February 2019

  2. Jets in heavy-ion collisions ◮ Hard scattered partons produce collimated sprays of particles ◮ Jet is a phenomenological object defined by an algorithm ◮ Well understood theoretically in pQCD in elementary reactions ◮ Jet quenching in presence of Quark-Gluon plasma p+p CMS, Phys. Rev. Lett. 107 (2011) 132001 2 F. Krizek

  3. Jets in ALICE tracks | η | < 0 . 9, 0 ◦ < ϕ < 360 ◦ , p const ◮ Charged jets: > 150 MeV/ c T ◮ Jet reconstruction: .. anti- k T algorithm (FastJet package [1]) For given jet R , charged jet acceptance is ..... | η jet | < 0 . 9 − R [1] Cacciari et al., Eur. Phys. J. C 72 (2012) 1896. 3 F. Krizek

  4. Quantification of medium-induced jet modification ◮ Inclusive observables ( p T spectra, high- p T hadron-jet correlations) ◮ Quantification of jet shapes by functions which depend on 4-momenta of constituents (angularity, p T D , jet mass,. . . ) � p T, i � κ � ∆ R jet, i � β � λ κ β = ................. [1] p T,jet R i ∈ constituents ◮ Clustering history (grooming, N-subjettiness) [1] A. J. Larkoski, J. Thaler, and W. J. Waalewijn, JHEP 11 (2014) 129 4 F. Krizek

  5. Selection of jets using fragmentation bias 1 ALICE Pb-Pb s =2.76 TeV -1 NN Inclusive ) c -1 10 Leading track p > 5 GeV/ c (GeV/ T Leading track p > 10 GeV/ c -2 T 10 Centrality: 0-10% -3 10 jet Charged Jets η -4 ch jet 10 Anti- k R = 0.3 d T | | < 0.5 η T,ch jet jet -5 10 N p track > 0.15 GeV/ c T 2 -6 d 10 p d -7 10 evt 1 -8 N 10 coll -9 1 10 N -10 10 -40 -20 0 20 40 60 80 100 raw p = p - A (GeV/ c ) ρ jet T,ch jet T,ch jet ch ALI−PUB−64210 ◮ Hard scattering, rare process embedded in large background ◮ Correction of jet transverse momentum for mean background energy density [1] p reco,ch = p ch,raw − ρ × A jet where A jet is jet area and T,jet T,jet ρ = median k T jets { p T,jet / A jet } ◮ Spectrum of reconstructed jets at low p T is dominated by combinatorial jets ◮ Suppression of combinatorial jets by high- p T jet constituent requirement results in fragmentation bias on jets [1] Cacciari et al., Phys. Lett. B 659 (2008) 119. 5 F. Krizek

  6. Hadron-jet coincidence measurement 10 -1 TT = trigger track ) c ALICE 0-10% Pb-Pb s = 2.76 TeV (GeV/ NN 1 Anti- k charged jets, R = 0.4 T π − ∆ ϕ < 0.6 − 1 10 reco,ch TT{8,9} T,jet Integral: 1.644 0.005 ± − 2 N 10 p TT{20,50} TT { X,Y } means 2 d d Integral: 1.651 ± 0.009 jet η − 3 10 d X < p T,trig < Y GeV/ c trig 1 − 4 10 N − 5 10 Statistical errors only p reco,ch = p ch, raw − ρ × A jet T,jet T,jet − 6 10 40 20 0 20 40 60 80 100 120 − − reco,ch [1] ALICE, JHEP 09 (2015) 170 p (GeV/ c ) T,jet ALI−PUB−93509 ◮ Hadron-jet correlation allows to suppress combinatorial jets including multi-parton interaction without imposing fragmentation bias ◮ Data driven approach allows to measure jets with large R and low p T ◮ In events with a high- p T trigger hadron, analyze recoiling away side jets [1] | ϕ trig − ϕ jet − π | < 0 . 6 rad ◮ Assuming uncorrelated jets are independent of trigger p T 6 F. Krizek

  7. ∆ recoil in Pb–Pb at √ s NN = 2 . 76 TeV � � d 2 N jet d 2 N jet 1 − 1 � � ∆ recoil = � � d p ch d p ch N trig T,jet d η � N trig T,jet d η � p T,trig ∈ TT { 20 , 50 } p T,trig ∈ TT { 8 , 9 } d 2 N AA � � � σ AA → h+X · d 2 σ AA → h+jet+X 1 � 1 jet � � ⋄ Link to theory ... = � � N AA d p ch d p ch T,jet d η jet T,jet d η jet � � trig p T,trig ∈ TT p T,h ∈ TT − 2 -1 10 ◮ ∆ recoil corrected for background ) ALICE 0-10% Pb-Pb s = 2.76 TeV c (GeV/ Anti- k charged jets smearing of jet p T + detector T π − ∆ ϕ < 0.6 effects TT{20,50} − TT{8,9} recoil − 3 10 ◮ Medium effects ∆ ∆ I AA = ∆ Pb-Pb recoil / ∆ pp recoil R = 0.2 R = 0.4 Need pp reference at the same √ s − 4 R = 0.5 10 Correlated uncertainty Shape uncertainty 20 30 40 50 60 70 80 90 100 ALICE, JHEP 09 (2015) 170 ch (GeV/ ) p c T,jet ALI−PUB−93501 7 F. Krizek

  8. ∆ I AA and ∆ recoil ratio in Pb–Pb =0.5) 1.8 PYTHIA ALICE 1.6 ALICE R = 0 . 5 0-10%, Pb-Pb s = 2.76 TeV recoil 1.6 NN 0-10% Pb-Pb s = 2.76 TeV NN Anti- k charged jets 1.4 Anti- k charged jets, R = 0.5 T R T π − ∆ ϕ < 0.6 1.4 ∆ < 0.6 π − ∆ ϕ ( 1.2 recoil TT{20,50} − TT{8,9} / PbPb recoil TT{20,50} − TT{8,9} 1.2 1 ∆ 1 ∆ =0.2)/ Hadron Trigger Threshold = Hadron Trigger Threshold 0.8 AA 0.8 0.6 I 0.6 ∆ R 0.4 ( ALICE data 0.4 recoil ALICE data Shape uncertainty 0.2 Shape uncertainty Correlated uncertainty 0.2 PYTHIA Perugia: Tune 2010 & 2011 ∆ Correlated uncertainty 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 ch p (GeV/ c ) ch p (GeV/ c ) T,jet T,jet ALI-PUB-93521 ALI−PUB−93497 ◮ Left: ∆ I AA with Reference ∆ PYTHIA from PYTHIA Perugia 10 recoil Suppression of the recoil jet yield ◮ Right: Observable sensitive to lateral energy distribution in jets Red band: variation in the observable calculated using PYTHIA tunes No evidence for significant energy redistribution w.r.t. PYTHIA ALICE, JHEP 09 (2015), 170 8 F. Krizek

  9. Jet broadening and the transport coefficient ˆ q � � k 2 � d 2 k ⊥ = 1 ⊥ (2 π ) 2 k 2 ˆ q ≡ ⊥ P ( k ⊥ ) L L � q d 2 x ⊥ e − i k ⊥ x ⊥ W R ( x ⊥ ) P ( k ⊥ ) = k L W R ( x ⊥ ) ≡ expectation value of the Wilson loop ◮ Strongly coupled plasma (AdS CFT) : P ( k ⊥ ) is Gaussian ◮ Weakly coupled plasma (perturbative thermal field theory) : P ( k ⊥ ) is a Gaussian with a power-law P ( k ⊥ ) ∝ 1 / k 4 ⊥ tail emerging from single hard Moli` ere scatterings off QGP quasi-particles ⇒ Use recoil jets to search for QGP quasi-particles [1] by looking at enhancement in large angle deflections w.r.t. reference pp ........... [1] D’Eramo et al., JHEP 05 (2013) 031. 9 F. Krizek

  10. Search for large-angle single hard Moli` ere scatterings ) ϕ ALICE ∆ 0.06 0-10% Pb-Pb s = 2.76 TeV ( NN Φ Anti- k charged jets, R = 0.4 T reco,ch 40 < p < 60 GeV/ c T,jet 0.04 Hadron trigger ALICE, JHEP 09 (2015), 170 TT{20,50} − TT{8,9} 0.02 TT{20,50} TT{8,9} 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 ∆ ϕ ALI−PUB−93873 For recoil jets in 40 < p ch T,jet < 60 GeV/ c define � � d 2 N jet d 2 N jet 1 1 � � Φ (∆ ϕ ) = − � � d p ch d p ch N trig T,jet d∆ ϕ � N trig T,jet d∆ ϕ � TT { 20 , 50 } TT { 8 , 9 } Quantify the rate of large angle scatterings � π − ∆ ϕ thresh Σ (∆ ϕ thresh ) = Φ (∆ ϕ ) d∆ ϕ π/ 2 10 F. Krizek

  11. Σ (∆ ϕ thresh ) in Pb–Pb and PYTHIA 0.03 ) PYTHIA thresh ALICE ALICE Statistical errors only 2 0-10% Pb-Pb s = 2.76 TeV 0-10% Pb-Pb s = 2.76 TeV NN NN ϕ ) Anti- k charged jets, R = 0.4 thresh Anti- k charged jets, R = 0.4 T T ∆ reco,ch reco,ch 0.02 40 < p < 60 GeV/ c 40 < p < 60 GeV/ c ( T,jet T,jet Σ ϕ TT{20,50} TT{8,9} TT{20,50} TT{8,9} − − ∆ 1 Pb-Pb ( Σ / Data PYTHIA + Pb-Pb 0.01 ) thresh 0 ϕ ∆ 0 ( Σ Slope = 0.527 0.641( stat ) 0.36( sys ) Statistical errors only − ± ± 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ∆ ϕ ∆ ϕ thresh thresh ALI−PUB−93885 ALI−PUB−93889 ◮ Raw data are compared with PYTHIA smeared with detector response and embedded into real events ◮ Ratio < 1 corresponds to the suppression of recoil jet yield ◮ Shape of the ratio depends on underlying processes ◮ Fit of the ratio by a linear function gives a slope consistent with zero ⇒ No evidence for medium-induced Moli` ere scattering ◮ To be further studied in Run3 with more statistics and for lower jet p T s ALICE, JHEP 09 (2015), 170 11 F. Krizek

  12. QGP signatures in small systems ◮ Indication of collective effects in pp and p–Pb 2 < p < 4 GeV/ c p-Pb s = 5.02 TeV T,trig NN 1 < p < 2 GeV/ c (0-20%) - (60-100%) T,assoc -1 ) (rad 0.85 assoc ϕ ∆ 0.80 d η N ∆ 2 d d 0.75 trig 1 N 2 4 1 3 2 0 (rad) ∆ 1 η ϕ ∆ -1 0 -1 -2 ALI−PUB−46246 CMS, JHEP 09 (2010) 091 ALICE, Phys.Lett. B 719 (2013) 29–41 ◮ Is there jet quenching in p–Pb? qL 2 ⋄ ∆ E ∝ ˆ BDMPS, Nucl. Phys. B483 (1997) 291 q | pPb = 1 ⋄ ˆ 7 ˆ q | PbPb K.Tywoniuk, Nucl.Phys. A 926 (2014) 85–91 ⋄ ∆ E = (8 ± 2 stat ) GeV / c medium-induced E transport to R > 0 . 5 in Pb–Pb ALICE, JHEP 09 (2015) 170 12 F. Krizek

  13. Event Activity biased jet measurements in p–Pb at LHC Jet R pPb in p–Pb at √ s NN = 5 . 02 TeV Event Activity from E T in Pb-going direction − 4 . 9 < η < − 3 . 2 d N cent jets / d p T R pPb = T pPb · d σ pp / d p T ◮ R pPb depends on rapidity range Caveats: ◮ T pPb assume Event Activity correlated with geometry (Glauber modeling) ◮ Conservation laws and fluctuations Kordell, Majumder, arXiv:1601.02595v1 Alternative: Hadron-jet conditional yields 13 F. Krizek

Recommend


More recommend