optimierung von kunststoffbauteilen im crash status und
play

Optimierung von Kunststoffbauteilen im Crash: Status und Ausblick - PowerPoint PPT Presentation

Optimierung von Kunststoffbauteilen im Crash: Status und Ausblick Torsten Hensel BASF SE Dr. Steffen Frik, Opel AG Andreas Wst, BASF SE Dr. Stefan Glaser, BASF SE Content Motivation Material modelling of Short fibre reinforced


  1. Optimierung von Kunststoffbauteilen im Crash: Status und Ausblick Torsten Hensel – BASF SE Dr. Steffen Frik, Opel AG Andreas Wüst, BASF SE Dr. Stefan Glaser, BASF SE

  2. Content  Motivation  Material modelling of Short fibre reinforced thermoplastics for Crash  ULTRASIM™ examples and applications at OPEL  Modelling Energy absorbing structures out of glass-filled thermoplastic materials  Vision  Integrative Approach  Summary Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 2

  3. Motivation Application of Polymers • More and more structural components are made of polymers (e.g. short fiber reinforced polymers) • These materials show significant anisotropy due to fiber orientation caused by injection molding • In order to predict component behavior, kinematics and structural response with required accuracy, anisotropy must be captured Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 3

  4. Lower Bumper Support Development targets: • Optimized, ribbed plastic structure to provide sufficient support for lower leg during the impact • Needs to fail in a controlled manner during RCAR impacts in order not to damage other components • Low weight at reasonable costs Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 4

  5. Lower Leg Impact Kinematics Without Lower Bumper Support With Lower Bumper Support Support lower leg, No support of lower leg reduce knee bending angle Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 5

  6. 6 LS-DYNA Forum 2011 - Filderstadt Lower Leg Impact (Full Model) Wüst, Frik, Hensel, Glaser

  7. Simulation Results Impact on stiffness and rupture Normalized acceleration 7 Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  8. Integrative Simulation ULTRASIM™ for fiber reinforced thermoplastics Process Measurement BASF Material model • Anisotropic • Nonlinear Part • Strain-rate sensitive • Tension-compression asymmetric • Failure modelling • Temperature dependent Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 8

  9. Integrative Simulation ULTRASIM™ Fiber orientation and material behaviour Calculated glass fiber orientation based Stress on optimum processing conditions Fiber orientation of 0,5 Local true stress strain at a fiber orientations of 0.5 Orientation of fibers Strain Stress Stress Fiber orientation of 0,7 Fiber orientation of 0,9 Local true stress strain at a Local true stress strain at a fiber orientations of 0.7 and 0.3 fiber orientations of 0.9 and 0.1 Strain Strain Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 9

  10. Integrative Simulation ULTRASIM™ Data flow structure ABAQUS, LS-Dyna, PAM, RADIOSS, NASTRAN Geometry, Boundary Finite Element Simulation Cond. MOLDFLOW FIBER anisotropic material model MOLDEX    homogenization of p Filling- orientation simulation homogenization of fibers Material- parameter and polymer Material model Material model Material- for fibers parameter for polymer •elastic •elastic •lastic-plastic •brittle •viscoplastic Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 10

  11. LBS Implementations 2006 2008 2009 2010 Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 11

  12. Additional Applications  Engine Mounts (e.g. Insignia)  Special Seats (e.g. Insignia OPC) Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 12

  13. Stress-Strain behaviour Tension-Compression Asymmetry influence: fiber orientation Injection moulded plate and hydrostatic stress state Stress [MPa] Compression 120 100 Tension 80 60 Tension Compression 40 20 0 Strain [%] 0 2 4 6 8 9 10 Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 13

  14. Example for an Energy absorbing plastics structure – BASF Test Specimen for compression load Needed for Calibrating Failure Simulation Parameters Specimen is designed for controlled collapse Material: B3WG6 CR (PA6 GF30%) sliding barrier 60 mm 60 mm Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 14

  15. Plastic specimen under compression load Simulation and Experiment Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  16. Test-specimen under compression load Simulation and Experiment 60 mm Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 16

  17. Lower Loadpath Traditional Metal Crashbox: Loadpath 1 Space for additional New Loadpath 2 Absorber Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 17

  18. Videocomparison Absorber  enhanced ULTRASIM™ failure modelling ULTRASIM™ Integrative Math. Simulation Optimierung Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  19. Dynamic Test Video Drop mass: 60 kg Drop height: 2.5 m Drop Energy: 1.47 kJ  25 msec Duration:  75 mm Displacement: Part weight: ~130gr Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  20. Parameter Optimization in CAE Iterative process based on mathematical optimization methods Design Variables Mathematical FE-Solver Optimization Methods System responses Design parameters • Wallthickness • Contours • Rib heights • … Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  21. Shape Optimization using Morphing Morphing parameter 1 Morphing parameter 2 Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  22. Vision – Integrative Optimization Standard Optimization and Integrative Approach Plastics granulate with Injection Part Assembly Product in use glass fibers molding process BASF ULTRASIM • Crash • Static Loads • NVH • Warpage • … Standard Approach Integrative Optimization Approach Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 22

  23. Workflow for Standard Optimization Approach   x   1 Mathematical System parameters Vector of Design   x e.g. wallthicknesses Optimizer 2 Variables     x 3 Modified FE-Inputfile vector of Responses   FE-Solver r   1 ABAQUS, LS-Dyna, PAM   r 2     r 3 FE-Results Response Extraction Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 23

  24. Workflow for Integrative Optimization Approach Single disciplinary (without morphing)   x   1 Mathematical General system parameters Vector of Design   x Optimizer 2 Variables     x 3 Wallthickness, Injection time and location, temperatures, gate delay times, … Wallthickness, … vector of Intermediate Mesh Responses for mapping   r   1 Discipline „ 0 “ : Discipline 1:   BASF ULTRASIM ™ Process r 2 Mechanical FE Fiber Orientation   Simulation Mapping Simulation   r Manufacturing 3 Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 24

  25. Workflow for Integrative Optimization Approach Multi disciplinary (with morphing)   x   1 Mathematical General system parameters Vector of Design   x Optimizer 2 Variables   Morphing   x 3 Wallthickness, Injection time and location, temperatures, gate delay times, … vector of Responses   r   1 Intermediate Intermediate Intermediate Process Mesh Mesh Mesh   BASF ULTRASIM ™ r 2 Fiber Orientation Simulation   Mapping   Manufacturing r 3 Discipline „ 0 “ Discipline 1 Discipline 2 … Discipline n Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 25

  26. Integrative Optimization Example Filling, Warpage, Impact, Static Load, Shape Optimization by Morphing LS-OPT, MOLDFLOW, LS-Dyna, ANSA, ABAQUS Filling Warpage Integrative Morphing Optimization Static Load Impact Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt

  27. Summary  More and more structural vehicle parts are made of anisotropic polymers  Injection molding process determines fiber orientation and thus local mechanical properties  ULTRASIM TM approach has been applied for numerous applications  Initially: Lower bumper support for pedestrian protection  Extended to engine mounts and seats  Simulation results show excellent correlation with physical tests  Extended ULTRASIM™ failure model is crucial for the accurate design of energy absorbing structures  Integrative Optimization Approach allows simultaneous optimization of process and mechanical characteristics Wüst, Frik, Hensel, Glaser LS-DYNA Forum 2011 - Filderstadt 27

Recommend


More recommend