OPODIS 2018, Hong Kong, 2018/12/19 Optimal Rendezvous π -Algorithms for Two Asynchronous Mobile Robots with External-Lights Takashi OKUMURA Koichi WADA Xavier DΓFAGO Hosei University Hosei University Tokyo Institute of Technology Japan Japan Japan December 2018
Optimal Rendezvous π -Algorithms for Two Asynchronous Mobile Robots with External-Lights
Rendezvous External-Lights π -Algorithms
Autonomous Mobile Robots not these robots! 4 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Autonomous Mobile Robots Theoretical model β£ Suzuki and Yamashitaβs seminal work Distributed anonymous mobile robots, by I. Suzuki and M. Yamashita, SIAM J. Computing , 28(4): 1347-1363(1999) Coordination task by Mobile Robots β£ Rendezvous , Gathering, Convergence, Formation ... Rendezvous β£ Reach same location in finite steps Question β£ βpower of lights" and additional assumptions β¨ to solve Rendezvous 5 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Outline Model(s) β¨ Related Work β¨ Our Results β¨ Conclusion β¨ 6 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Model(s)
β¨ Autonomous Mobile Robots (Basic model) Robot: Point on an infinite 2D-space β£ No global coordinate system (Local only) β£ Anonymous (No distinguished ID) β£ Oblivious (No memory) β£ Deterministic β£ Uniform (Identical algorithm) β£ No communication (Observe the environment) β¨ β£ With lights (more later) 8 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Execution: Look-Compute-Move Look β£ Take a snapshot of all robots' current locations (in terms of LCS) Compute β£ Deciding the next position and color Move Change color β£ Move to the next position Snapshot ! time robot L C M Look Compute Move 9 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Scheduler LCM . r Centralized t L C M L C M n e β£ LCM atomic; 1 robot at a time C L C M L C M FSYNC c n L C M L C M L C M L C M y β£ LCM atomic; all robots together S F L C M L C M L C M L C M SSYNC c β£ LCM atomic; subset of robots n L C M L C M L C M y S S L C M L C M ASYNC β£ no bounds on delays/durations c n L M C M L C y LC-Atomic ASYNC S A C L M L C M L M C β£ LC atomic 10 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
β¨ Difficulty of Rendezvous Move toHalf (midpoint) β¨ FSYNC execution β£ Rendezvous SOLVED ! β¨ Centralized execution β£ Convergence achieved β£ Rendezvous NOT SOLVED [20] I. Suzuki, M. Yamashita. Distributed anonymous mobile robots . SIAM J. Comput. , 28(4):1347β1363, 1999. 11 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
β¨ Difficulty of Rendezvous Move to Other β¨ Centralized execution β£ Rendezvous SOLVED ! β¨ FSYNC execution β£ Swap places forever β£ Rendezvous NOT SOLVED => requires a Stay move 12 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Light Models β β L #Colors β£ log(|L|) bits of information Full light ( β ( me ), β ( other ) ) β£ can observe: own and others' color Internal light ( Fstate ) β£ can observe: own color only β ( me ) β£ basically log(|L|) bits register External light ( Fcomm ) β ( other ) β£ can observe: others' color only [4] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots with lights. Theor. Comput. Sci. , 609:171β184, 2016 [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57β72, 2016. 13 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Example: SSYNC, Full(2) other is Black β οΏ½οΏ½οΏ½οΏ½ other is Black : other is White β οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ A B other is White β οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ [21] G. Viglietta. Rendezvous of two robots with visible bits . In Proc. 9th ALGOSENSORS , pp. 291β306, 2014. 14 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Movement Restriction Rigid β£ Robots always reach the destination Non-rigid β£ may stop before reaching the destination β£ guarantee to move by at least Ξ΄ (for some unknown Ξ΄ >0) Non-rigid with Ξ΄ β£ robots know the value of Ξ΄ Ξ΄ destination destination Movement is Non-Rigid Movement is Rigid 15 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Algorithm Properties Self-Stabilizing β£ arbitrary initial configurations β¨ Quasi Self-Stabilizing β£ robots start with the same arbitrary color (whichever). β¨ non QSS β£ robots start with some specific colors. 16 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 not at all β quasi β ( π ) SSYNC self-stabilizing rigid non Rigid β LC-atomic non Rigid with Ξ΄ β ( π ) ASYNC rigid β ASYNC β ( π ) rigid 18 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π β ( π ) SSYNC rigid β LC-atomic β ( π ) ASYNC rigid β ASYNC β ( π ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bits . In Proc. 9th ALGOSENSORS , pp. 291β306, 2014. 19 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
β³ β¨ β¨ Algorithm class π Algorithm β¨ observation destination ( β ( me ), β ( other ) ) β¦ Ξ» β β colors Destination point β¨ destination (1 β Ξ» ) β me.pos Ξ» β other.pos = + Examples β£ toOther ( Ξ» = 1) other β£ toHalf ( Ξ» = 0.5) β£ Stay me ( Ξ» = 0) destination [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291β306, 2014. 20 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π β ( π ) SSYNC rigid β LC-atomic β ( π ) ASYNC rigid β ASYNC β ( π ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291β306, 2014. 21 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π β ( π ) SSYNC rigid β LC-atomic β ( π ) ASYNC rigid β (3,3) π (lower bound, upper bound) ASYNC β ( π ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291β306, 2014. 22 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π β ( π ) SSYNC rigid β 2 π LC-atomic β ( π ) ASYNC rigid β (3,3) π ASYNC β ( π ) rigid 2 π [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291β306, 2014. [17] T. Okumura, K. Wada, Y. Katayama. Optimal asynchronous rendezvous for mobile robots with lights , In Proc. 19th SSS , Nov. 2017. 23 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work: not π full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β β ( π ) SSYNC rigid β LC-atomic β ( π ) ASYNC rigid not class π β 2 ASYNC β ( π ) uses position info: β¨ rigid distinct vs. gathered [11] A. Heriban, X. DΓ©fago, S. Tixeuil. Optimally gathering two robots , In Proc. 19th ICDCN , Jan. 2018. 24 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π β ( π ) SSYNC rigid β 2 π LC-atomic β ( π ) ASYNC rigid β (3,3) π ASYNC β ( π ) rigid 2 π 25 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
External Lights
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π β ( π ) SSYNC rigid β 2 π LC-atomic β ( π ) ASYNC rigid β (3,3) π ASYNC β ( π ) rigid 2 π 27 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π 3 π β ( π ) SSYNC rigid β 2 π LC-atomic β ( π ) ASYNC rigid β (3,3) π ASYNC β ( π ) rigid 2 π [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57β72, March 2016. 28 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC β 0 β 2 π 3 π β ( π ) SSYNC rigid β 2 π LC-atomic β ( π ) ASYNC rigid β (3,3) π β π ASYNC β ( π ) rigid 2 π [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57β72, March 2016. 29 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19
Recommend
More recommend