optimal rendezvous algorithms for two asynchronous mobile
play

Optimal Rendezvous -Algorithms for Two Asynchronous Mobile Robots - PowerPoint PPT Presentation

OPODIS 2018, Hong Kong, 2018/12/19 Optimal Rendezvous -Algorithms for Two Asynchronous Mobile Robots with External-Lights Takashi OKUMURA Koichi WADA Xavier DFAGO Hosei University Hosei University Tokyo Institute of Technology Japan


  1. OPODIS 2018, Hong Kong, 2018/12/19 Optimal Rendezvous π“œ -Algorithms for Two Asynchronous Mobile Robots with External-Lights Takashi OKUMURA Koichi WADA Xavier DΓ‰FAGO Hosei University Hosei University Tokyo Institute of Technology Japan Japan Japan December 2018

  2. Optimal Rendezvous π“œ -Algorithms for Two Asynchronous Mobile Robots with External-Lights

  3. Rendezvous External-Lights π“œ -Algorithms

  4. Autonomous Mobile Robots not these robots! 4 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  5. Autonomous Mobile Robots Theoretical model β€£ Suzuki and Yamashita’s seminal work Distributed anonymous mobile robots, by I. Suzuki and M. Yamashita, SIAM J. Computing , 28(4): 1347-1363(1999) Coordination task by Mobile Robots β€£ Rendezvous , Gathering, Convergence, Formation ... Rendezvous β€£ Reach same location in finite steps Question β€£ β€œpower of lights" and additional assumptions 
 to solve Rendezvous 5 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  6. Outline Model(s) 
 Related Work 
 Our Results 
 Conclusion 
 6 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  7. Model(s)

  8. 
 Autonomous Mobile Robots (Basic model) Robot: Point on an infinite 2D-space β€£ No global coordinate system (Local only) β€£ Anonymous (No distinguished ID) β€£ Oblivious (No memory) β€£ Deterministic β€£ Uniform (Identical algorithm) β€£ No communication (Observe the environment) 
 β€£ With lights (more later) 8 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  9. Execution: Look-Compute-Move Look β€£ Take a snapshot of all robots' current locations (in terms of LCS) Compute β€£ Deciding the next position and color Move Change color β€£ Move to the next position Snapshot ! time robot L C M Look Compute Move 9 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  10. Scheduler LCM . r Centralized t L C M L C M n e β€£ LCM atomic; 1 robot at a time C L C M L C M FSYNC c n L C M L C M L C M L C M y β€£ LCM atomic; all robots together S F L C M L C M L C M L C M SSYNC c β€£ LCM atomic; subset of robots n L C M L C M L C M y S S L C M L C M ASYNC β€£ no bounds on delays/durations c n L M C M L C y LC-Atomic ASYNC S A C L M L C M L M C β€£ LC atomic 10 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  11. 
 Difficulty of Rendezvous Move toHalf (midpoint) 
 FSYNC execution β€£ Rendezvous SOLVED ! 
 Centralized execution β€£ Convergence achieved β€£ Rendezvous NOT SOLVED [20] I. Suzuki, M. Yamashita. Distributed anonymous mobile robots . SIAM J. Comput. , 28(4):1347–1363, 1999. 11 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  12. 
 Difficulty of Rendezvous Move to Other 
 Centralized execution β€£ Rendezvous SOLVED ! 
 FSYNC execution β€£ Swap places forever β€£ Rendezvous NOT SOLVED => requires a Stay move 12 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  13. Light Models β„“ ∈ L #Colors β€£ log(|L|) bits of information Full light ( β„“ ( me ), β„“ ( other ) ) β€£ can observe: own and others' color Internal light ( Fstate ) β€£ can observe: own color only β„“ ( me ) β€£ basically log(|L|) bits register External light ( Fcomm ) β„“ ( other ) β€£ can observe: others' color only [4] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots with lights. Theor. Comput. Sci. , 609:171–184, 2016 [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57–72, 2016. 13 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  14. Example: SSYNC, Full(2) other is Black β‡’ οΏ½οΏ½οΏ½οΏ½ other is Black : other is White β‡’ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ A B other is White β‡’ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ [21] G. Viglietta. Rendezvous of two robots with visible bits . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 14 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  15. Movement Restriction Rigid β€£ Robots always reach the destination Non-rigid β€£ may stop before reaching the destination β€£ guarantee to move by at least Ξ΄ (for some unknown Ξ΄ >0) Non-rigid with Ξ΄ β€£ robots know the value of Ξ΄ Ξ΄ destination destination Movement is Non-Rigid Movement is Rigid 15 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  16. Algorithm Properties Self-Stabilizing β€£ arbitrary initial configurations 
 Quasi Self-Stabilizing β€£ robots start with the same arbitrary color (whichever). 
 non QSS β€£ robots start with some specific colors. 16 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  17. Related Work

  18. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 not at all – quasi – ( 𝛆 ) SSYNC self-stabilizing rigid non Rigid – LC-atomic non Rigid with Ξ΄ – ( 𝛆 ) ASYNC rigid – ASYNC – ( 𝛆 ) rigid 18 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  19. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid – ASYNC – ( 𝛆 ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bits . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 19 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  20. β•³ 
 
 Algorithm class π“œ Algorithm 
 observation destination ( β„“ ( me ), β„“ ( other ) ) ↦ Ξ» ∈ ℝ colors Destination point 
 destination (1 βˆ’ Ξ» ) β‹… me.pos Ξ» β‹… other.pos = + Examples β€£ toOther ( Ξ» = 1) other β€£ toHalf ( Ξ» = 0.5) β€£ Stay me ( Ξ» = 0) destination [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 20 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  21. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid – ASYNC – ( 𝛆 ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 21 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  22. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ (lower bound, upper bound) ASYNC – ( 𝛆 ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 22 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  23. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. [17] T. Okumura, K. Wada, Y. Katayama. Optimal asynchronous rendezvous for mobile robots with lights , In Proc. 19th SSS , Nov. 2017. 23 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  24. Related Work: not π“œ full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid not class π“œ – 2 ASYNC – ( 𝛆 ) uses position info: 
 rigid distinct vs. gathered [11] A. Heriban, X. DΓ©fago, S. Tixeuil. Optimally gathering two robots , In Proc. 19th ICDCN , Jan. 2018. 24 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  25. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ 25 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  26. External Lights

  27. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ 27 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  28. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ 3 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57–72, March 2016. 28 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  29. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ 3 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ∞ π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57–72, March 2016. 29 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

Recommend


More recommend