optimal mechanism design without priors
play

Optimal Mechanism Design (without Priors) Jason D. Hartline - PowerPoint PPT Presentation

Optimal Mechanism Design (without Priors) Jason D. Hartline Microsoft Research Silicon Valley June 5, 2005 Also at EC Sunday 2:00: G. Aggarwal, J. Hartline, Knapsack Auctions . Sunday 2:30: M.-F . Balcan, A. Blum, J. Hartline, Y.


  1. Step 3: Find Optimal Mechanism Step 3: Find Optimal Mechanism from class for distribution. Maximize Auction’s Profit: E b [ � i p i ( b ) − c ( x ( b ))] . Subject to truthfulness: 1. bidder i wins if b i > t i ⇔ x i ( b i ) is a step function. � b i 2. bidder i pays t i x i ( b i ) ⇔ p i ( b i ) = x i ( b i ) b i − 0 x i ( b ) db. Definition: The virtual valuation of a bidder i with value v i ∼ F i is ψ i ( v i ) = v i − 1 − F i ( v i ) f i ( v i ) . Lemma: For x i ( b ) and bids b with joint densify function f : � E b [ p i ( b )] = ψ i ( b i ) x i ( b ) f ( b ) d b . b 12 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  2. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 13 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  3. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 14 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  4. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 15 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  5. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 16 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  6. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 17 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  7. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 18 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  8. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 19 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  9. Proof of Lemma ˆ pi ( b ) ˜ = Z pi ( bi ) f ( b ) d b E b b Z Z = pi ( bi ) fi ( bi ) f ( b i ) dbid b i b i bi Z bi » – Z Z = xi ( bi ) bi − xi ( b ) db fi ( bi )( b i ) dbid b i b i bi 0 Z h Z bi "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbdbi f ( b i ) d b i bi =0 b =0 b i bi Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b i bi b =0 bi = b Z h Z h "Z # Z = xi ( bi ) bifi ( bi ) dbi − xi ( b ) fi ( bi ) dbidb f ( b i ) d b i b =0 bi = b b i bi Z h "Z # Z ` ´ = xi ( bi ) bifi ( bi ) dbi − xi ( b ) 1 − Fi ( b ) db f ( b i ) d b i b i bi b =0 " # 1 − Fi ( bi ) Z Z = xi ( bi ) fi ( bi ) f ( b i ) dbid b i bi − b i bi fi ( bi ) Z = ψi ( bi ) xi ( bi ) f ( b ) d b b 20 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  10. Myerson Step 3: Find optimal mechanism. 21 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  11. Myerson Step 3: Find optimal mechanism. Theorem: [Mye-81] Given allocation rule x and bids b with density function f the expected profit is � �� � i ψ i ( b i ) x i ( b ) − c ( x ( b )) f ( b ) d b . b Definition: Myerson’s optimal mechanism for distribution F = F 1 × . . . × F n , is Myersion F ( b ) with � i ψ i ( b i ) x ′ i − c ( x ′ ) . x ( b ) = argmax x ′ Theorem: Myersion’s mechanism is optimal and truthful when the ψ i ( · ) s are monotone. Note 1: This applies to any cost function c ( x ) (not just for single-item auction). 21 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  12. Myerson Note 2: For some c ( x ) non-monotone ψ i ( · ) can be ironed to be monotone. 22 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  13. Myerson Note 2: For some c ( x ) non-monotone ψ i ( · ) can be ironed to be monotone. 22 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  14. Example: Basic Auction The Basic Auction Problem: Given: • n identical items for sale. • n bidders, bidder i willing to pay at most v i for an item. Design: auction with maximal profit. 23 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  15. Example Recall Theorem: [Mye-81] Given allocation rule x and bids b with density function f the expected profit is � �� � i ψ i ( b i ) x i ( b ) − c ( x ( b )) f ( b ) d b . b Recall Example: single-item auction � 0 if � i x i ≤ 1 c ( x ) = ∞ otherwise. Result: • Winner: the bidder with highest ψ i ( b i ) (such that ψ i ( b i ) ≥ 0 ). • Winner’s Payment: argmin b { ψ i ( b ) ≥ ψ j ( b j ) & ψ i ( b ) ≥ 0 } 24 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  16. Example Recall Theorem: [Mye-81] Given allocation rule x and bids b with density function f the expected profit is � �� � i ψ i ( b i ) x i ( b ) − c ( x ( b )) f ( b ) d b . b Recall Example: single-item auction � 0 if � i x i ≤ 1 c ( x ) = ∞ otherwise. Result: • Winner: the bidder with highest ψ i ( b i ) (such that ψ i ( b i ) ≥ 0 ). • Winner’s Payment: argmin b { ψ i ( b ) ≥ ψ j ( b j ) & ψ i ( b ) ≥ 0 } • Suppose bids are identical, F i = F j : ⇒ max { b j : j � = i } ∪ { ψ − 1 (0) } 24 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  17. Example • Interpretation: Optimal Auction = Vickrey w/reserve price ψ − 1 (0) . 25 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  18. Example • Interpretation: Optimal Auction = Vickrey w/reserve price ψ − 1 (0) . 25 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  19. Example • Interpretation: Optimal Auction = Vickrey w/reserve price ψ − 1 (0) . Definition: opt( F ) = ψ − 1 (0) 25 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  20. Example • Interpretation: Optimal Auction = Vickrey w/reserve price ψ − 1 (0) . Definition: opt( F ) = ψ − 1 (0) = argmax b b (1 − F ( b )) 25 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  21. Other Directions 1. General ironing procedure for arbitrary costs? 2. Agent’s with correlated values. [Ron-03]. 3. Deficits. [CHRSU-04] 4. Iterative Mechanisms. [DRJSK-05] 5. Optimal Mechanism for multi-parameter agents? (needs characterization like [SW-05], related to [RL-05]) 26 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  22. Optimal Mechanism Design without Priors Part II The Market Analysis Metaphor

  23. Motivation Where does known prior come from? 1. previous sales. 2. market analysis. 28 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  24. Motivation Where does known prior come from? 1. previous sales. 2. market analysis. Issues: 1. incentive properties. 2. accuracy. 28 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  25. Motivation Where does known prior come from? 1. previous sales. 2. market analysis. Issues: 1. incentive properties. 2. accuracy. Argument 1: by assuming a known prior we ignore incentive and per- formance issues from obtaining the prior. 28 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  26. Motivation Where does known prior come from? 1. previous sales. 2. market analysis. Issues: 1. incentive properties. 2. accuracy. Argument 1: by assuming a known prior we ignore incentive and per- formance issues from obtaining the prior. Argument 2: (Wilson Doctrine) Mechanisms should be independent of details. 28 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  27. Market Analysis Market Analysis Approach: 1. Market Analysis ⇒ distributional knowledge F = ( F 1 , . . . , F n ) 2. Design mechanism for F : Myersion F Recall Incentive Compatibility: for all i , x i ( b i ) is monotone in b i . Can be arbitraty function of b i ! Insight: use b i for market analysis. 29 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  28. Imperical Distributions Definition: The imperical distribution for b is F b ( x ) = |{ i : b i <x }| ˆ . n Recall: Myersion F ⇒ x F i ( b ) , p F i ( b ) Set x i ( b i ) be the allocation for bidder i in Myersion ˆ F b i 30 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  29. Estimating Distributions Recall: Myerson’s Optimal Auction for bids i.i.d. from F : 1. optimal price = argmax p p (1 − F ( p )) . 2. offer all bidders the optimal price. 31 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  30. Estimating Distributions Recall: Myerson’s Optimal Auction for bids i.i.d. from F : 1. optimal price = argmax p p (1 − F ( p )) . 2. offer all bidders the optimal price. Idea: For bidder i use empirical estimate of F from b i . 31 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  31. Estimating Distributions Recall: Myerson’s Optimal Auction for bids i.i.d. from F : 1. optimal price = argmax p p (1 − F ( p )) . 2. offer all bidders the optimal price. Idea: For bidder i use empirical estimate of F from b i . Definition: The empirical distribution b i is ˆ 1 F b i ( p ) = “number of bids less than p ” × n − 1 . 31 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  32. Deterministic Optimal Price Auction For basic auction problem: 32 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  33. Deterministic Optimal Price Auction For basic auction problem: Deterministic Optimal Price Auction (DOP) [GHW-01,BV-03,Seg-03] On input b , for each bidder i : 1. p ← opt( b i ) . 2. If p ≤ b i , sell to bidder i at price p . 3. Otherwise, reject bidder i . 32 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  34. Deterministic Optimal Price Auction For basic auction problem: Deterministic Optimal Price Auction (DOP) [GHW-01,BV-03,Seg-03] On input b , for each bidder i : 1. p ← opt( b i ) . 2. If p ≤ b i , sell to bidder i at price p . 3. Otherwise, reject bidder i . Theorem: For b i.i.d. from F on range [1 , h ] , profit of DOP approaches optimal profit as n → ∞ . [BV-03,Seg-03] 32 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  35. Deterministic Optimal Price Auction For basic auction problem: Deterministic Optimal Price Auction (DOP) [GHW-01,BV-03,Seg-03] On input b , for each bidder i : 1. p ← opt( b i ) . 2. If p ≤ b i , sell to bidder i at price p . 3. Otherwise, reject bidder i . Theorem: For b i.i.d. from F on range [1 , h ] , profit of DOP approaches optimal profit as n → ∞ . [BV-03,Seg-03] Lemma: Worst-case profit is bad. [GHW-01] 32 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  36. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × + 90 × 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  37. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  38. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid Revenue from 10 bid What does DOP do for b i = 10 ? 9 bidders z }| { opt( b i ) = ( 10 , . . . , 10 , 1 , 1 , . . . , 1 ) | {z } 99 bidders 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  39. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid Is opt( b i ) = 1 or 10 ? Revenue from 10 bid What does DOP do for b i = 10 ? 9 bidders z }| { opt( b i ) = ( 10 , . . . , 10 , 1 , 1 , . . . , 1 ) | {z } 99 bidders 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  40. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid Is opt( b i ) = 1 or 10 ? Revenue from 10 bid • Revenue 10 What does DOP do for b i = 10 ? = 10 × 9 = 90 . 9 bidders z }| { • Revenue 1 opt( b i ) = ( 10 , . . . , 10 , 1 , 1 , . . . , 1 ) | {z } = 1 × 99 = 99 . 99 bidders 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  41. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid � �� � 1 Is opt( b i ) = 1 or 10 ? Revenue from 10 bid • Revenue 10 What does DOP do for b i = 10 ? = 10 × 9 = 90 . 9 bidders z }| { • Revenue 1 opt( b i ) = ( 10 , . . . , 10 , 1 , 1 , . . . , 1 ) | {z } = 1 × 99 = 99 . 99 bidders Result: Bidder i buys item at price 1! • Thus, opt( b i ) = 1 . 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  42. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid � �� � 1 Is opt( b i ) = 1 or 10 ? Revenue from 10 bid Revenue from 1 bid • Revenue 10 What does DOP do for b i = 1 ? What does DOP do for b i = 10 ? = 10 × 9 = 90 . 9 bidders 10 bidders z z }| }| { { • Revenue 1 opt( b i ) = ( opt( b i ) = ( 10 , 10 , . . . , 10 , 1 , . . . , 1 10 , . . . , 10 , 1 , 1 , . . . , 1 ) ) | | {z {z } } = 1 × 99 = 99 . 99 bidders 99 bidders Result: Bidder i buys item at price 1! • Thus, opt( b i ) = 1 . 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  43. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid � �� � 1 Is opt( b i ) = 1 or 10 ? Is opt( b i ) = 1 or 10 ? Revenue from 10 bid Revenue from 1 bid • Revenue 10 What does DOP do for b i = 10 ? What does DOP do for b i = 1 ? = 10 × 9 = 90 . 9 bidders 10 bidders z z }| }| { { • Revenue 1 opt( b i ) = ( opt( b i ) = ( 10 , . . . , 10 , 1 , 1 , . . . , 1 10 , 10 , . . . , 10 , 1 , . . . , 1 ) ) | | {z {z } } = 1 × 99 = 99 . 99 bidders 99 bidders Result: Bidder i buys item at price 1! • Thus, opt( b i ) = 1 . 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  44. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid � �� � 1 Is opt( b i ) = 1 or 10 ? Is opt( b i ) = 1 or 10 ? Revenue from 1 bid Revenue from 10 bid • Revenue 10 • Revenue 10 What does DOP do for b i = 10 ? What does DOP do for b i = 1 ? = 10 × 10 = 100 . = 10 × 9 = 90 . 9 bidders 10 bidders z z }| }| { { • Revenue 1 • Revenue 1 opt( b i ) = ( opt( b i ) = ( 10 , 10 , . . . , 10 , 1 , . . . , 1 10 , . . . , 10 , 1 , 1 , . . . , 1 ) ) | | {z {z } } = 1 × 99 = 99 . = 1 × 99 = 99 . 99 bidders 99 bidders Result: Bidder i buys item at price 1! • Thus, opt( b i ) = 1 . 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  45. Worst Case Analysis of DOP 10 bidders � �� � Example: for DOP and b = ( 10 , 10 , . . . , 10 , 1 , 1 , . . . , 1 ) � �� � 100 bidders Profit: 10 × Revenue from 10 bid + 90 × Revenue from 1 bid = 10 � �� � � �� � 1 0 Is opt( b i ) = 1 or 10 ? Is opt( b i ) = 1 or 10 ? Revenue from 1 bid Revenue from 10 bid • Revenue 10 • Revenue 10 What does DOP do for b i = 1 ? What does DOP do for b i = 10 ? = 10 × 10 = 100 . = 10 × 9 = 90 . 9 bidders 10 bidders z z }| }| { { • Revenue 1 • Revenue 1 opt( b i ) = ( opt( b i ) = ( 10 , . . . , 10 , 1 , 1 , . . . , 1 10 , 10 , . . . , 10 , 1 , . . . , 1 ) ) | | {z {z } } = 1 × 99 = 99 . = 1 × 99 = 99 . 99 bidders 99 bidders Result: Bidder i is rejected! Result: Bidder i buys item at price 1! • Thus, opt( b i ) = 1 . • Thus, opt( b i ) = 10 . 33 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  46. General Consistency Issue Emperical Myerson Auction may be inconsistent Double Auction Problem. 34 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  47. Approximation via Random Sampling Random Sampling Optimal Price Auction, RSOP 1. Randomly partition bids into two sets: b ′ and b ′′ . 2. Use p ′ = opt( b ′ ) as price for b ′′ . b 35 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  48. Approximation via Random Sampling Random Sampling Optimal Price Auction, RSOP 1. Randomly partition bids into two sets: b ′ and b ′′ . 2. Use p ′ = opt( b ′ ) as price for b ′′ . b b ′ b ′′ 35 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  49. Approximation via Random Sampling Random Sampling Optimal Price Auction, RSOP 1. Randomly partition bids into two sets: b ′ and b ′′ . 2. Use p ′ = opt( b ′ ) as price for b ′′ . b b ′ p ′ = opt( b ′ ) b ′′ 35 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  50. Approximation via Random Sampling Random Sampling Optimal Price Auction, RSOP 1. Randomly partition bids into two sets: b ′ and b ′′ . 2. Use p ′ = opt( b ′ ) as price for b ′′ . 3. Use p ′′ = opt( b ′′ ) as price for b ′ (optional). b b ′ p ′ = opt( b ′ ) p ′′ = opt( b ′′ ) b ′′ 35 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  51. Approximation via Random Sampling Random Sampling Optimal Price Auction, RSOP 1. Randomly partition bids into two sets: b ′ and b ′′ . 2. Use p ′ = opt( b ′ ) as price for b ′′ . 3. Use p ′′ = opt( b ′′ ) as price for b ′ (optional). b b ′ p ′ = opt( b ′ ) p ′′ = opt( b ′′ ) b ′′ Theorem: For b on range [1 , h ] , profit of RSOP approaches optimal profit as n → ∞ . 35 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  52. Worst Case with Assumption Recall Theorem: For b on range [1 , h ] , profit of RSOP approaches optimal profit as n → ∞ . 36 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  53. Worst Case with Assumption Recall Theorem: For b on range [1 , h ] , profit of RSOP approaches optimal profit as n → ∞ . Implicit Assumption: optimal profit ≫ h . 36 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  54. Worst Case with Assumption Recall Theorem: For b on range [1 , h ] , profit of RSOP approaches optimal profit as n → ∞ . Implicit Assumption: optimal profit ≫ h . Implicit Definition: optimal profit = “optimal profit from single price sale with bidders’ valuations.” 36 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  55. Worst Case with Assumption Recall Theorem: For b on range [1 , h ] , profit of RSOP approaches optimal profit as n → ∞ . Implicit Assumption: optimal profit ≫ h . Implicit Definition: optimal profit = “optimal profit from single price sale with bidders’ valuations.” Fact: impossible to approximate optimal profit when it is optimal to sell only one unit. E.g., b = (1 , 1 , 1 , 1 , h, 1 , 1) 36 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  56. Consistency Concern: lack of consistency? (bidders offered optimal prices from different empirical distributions) 37 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  57. Consistency Concern: lack of consistency? (bidders offered optimal prices from different empirical distributions) Result: DOP generalization via Myerson-VCG construction fails. 37 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  58. Consistency Concern: lack of consistency? (bidders offered optimal prices from different empirical distributions) Result: DOP generalization via Myerson-VCG construction fails. Recall: Myerson-VCG Construction: 1. Compute each player’s virtual valuation φ ( v i ) = v i − 1 − F ( v i ) . f ( v i ) 2. Run VCG on virtual valuations. 37 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  59. Consistency Concern: lack of consistency? (bidders offered optimal prices from different empirical distributions) Result: DOP generalization via Myerson-VCG construction fails. Recall: Myerson-VCG Construction: 1. Compute each player’s virtual valuation φ ( v i ) = v i − 1 − F ( v i ) . f ( v i ) 2. Run VCG on virtual valuations. Generalized DOP Technique: for each bidder i , 1. Compute virtual valuations using ˆ F b i . 2. Compute outcome of VCG on virtual valuations for bidder i . 37 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  60. Consistency Concern: lack of consistency? (bidders offered optimal prices from different empirical distributions) Result: DOP generalization via Myerson-VCG construction fails. Recall: Myerson-VCG Construction: 1. Compute each player’s virtual valuation φ ( v i ) = v i − 1 − F ( v i ) . f ( v i ) 2. Run VCG on virtual valuations. Generalized DOP Technique: for each bidder i , 1. Compute virtual valuations using ˆ F b i . 2. Compute outcome of VCG on virtual valuations for bidder i . Different empirical distributions ⇒ inconsistency. 37 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  61. The Double Auction Problem The Double Auction Problem : Given: • n sellers, seller i willing to sell a unit for at least s i . • n buyers, buyer i willing to buy a unit for at most b i . Design: Double auction maximize profit of broker. [BV-03,DGHK-02] 38 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  62. The Double Auction Problem The Double Auction Problem : Given: • n sellers, seller i willing to sell a unit for at least s i . • n buyers, buyer i willing to buy a unit for at most b i . Design: Double auction maximize profit of broker. [BV-03,DGHK-02] Consistency Constraint: number of winning buyers = number of winning sellers. 38 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  63. The Double Auction Problem The Double Auction Problem : Given: • n sellers, seller i willing to sell a unit for at least s i . • n buyers, buyer i willing to buy a unit for at most b i . Design: Double auction maximize profit of broker. [BV-03,DGHK-02] Consistency Constraint: number of winning buyers = number of winning sellers. Generalized DOP ⇒ inconsistent. Generalized RSOP ⇒ consistent. 38 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  64. Generalizing RSOP Random Sampling Optimal Price Double Auction, RSOP 1. Randomly partition bids into two sets: b ′ , s ′ and b ′′ , s ′′ 2. Compute virtual valuations for b ′ and s ′ using ˆ F b ′′ and ˆ F s ′′ . 3. Run VCG on virtual valuations of b ′ and s ′ . 39 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  65. Generalizing RSOP Random Sampling Optimal Price Double Auction, RSOP 1. Randomly partition bids into two sets: b ′ , s ′ and b ′′ , s ′′ 2. Compute virtual valuations for b ′ and s ′ using ˆ F b ′′ and ˆ F s ′′ . 3. Run VCG on virtual valuations of b ′ and s ′ . 4. Vice versa. 39 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  66. Generalizing RSOP Random Sampling Optimal Price Double Auction, RSOP 1. Randomly partition bids into two sets: b ′ , s ′ and b ′′ , s ′′ 2. Compute virtual valuations for b ′ and s ′ using ˆ F b ′′ and ˆ F s ′′ . 3. Run VCG on virtual valuations of b ′ and s ′ . 4. Vice versa. Consistency: because both partitions are consistent. 39 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  67. Generalizing RSOP Random Sampling Optimal Price Double Auction, RSOP 1. Randomly partition bids into two sets: b ′ , s ′ and b ′′ , s ′′ 2. Compute virtual valuations for b ′ and s ′ using ˆ F b ′′ and ˆ F s ′′ . 3. Run VCG on virtual valuations of b ′ and s ′ . 4. Vice versa. Consistency: because both partitions are consistent. Theorem: [BV-03] The RSOP double auction approaches optimal profit as n → ∞ . 39 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  68. Generalizing RSOP Random Sampling Optimal Price Double Auction, RSOP 1. Randomly partition bids into two sets: b ′ , s ′ and b ′′ , s ′′ 2. Compute virtual valuations for b ′ and s ′ using ˆ F b ′′ and ˆ F s ′′ . 3. Run VCG on virtual valuations of b ′ and s ′ . 4. Vice versa. Consistency: because both partitions are consistent. Theorem: [BV-03] The RSOP double auction approaches optimal profit as n → ∞ . Subtlety: Must iron emperical distribution when it fails the monotone hazard rate condition. 39 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  69. Is consistency feasible? Difficulty: Consistency, Truthfulness, and Profit Maximization. Example: • Basic Auction problem ( n bidders, n units). • Envy-freedom: all bidders are offered the same price. 40 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  70. Is consistency feasible? Difficulty: Consistency, Truthfulness, and Profit Maximization. Example: • Basic Auction problem ( n bidders, n units). • Envy-freedom: all bidders are offered the same price. Theorem: [GH-03] No auction is truthful, envy-free, and approximates the optimal profit better than o (log n/ log log n ) . But. . . 40 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  71. Is consistency feasible? Difficulty: Consistency, Truthfulness, and Profit Maximization. Example: • Basic Auction problem ( n bidders, n units). • Envy-freedom: all bidders are offered the same price. Theorem: [GH-03] No auction is truthful, envy-free, and approximates the optimal profit better than o (log n/ log log n ) . But. . . Theorem: Exists approximately optimal auctions that are • truthful with high probability and envy-free, or • envy-free with high probability and truthful. 40 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

  72. Optimal Mechanism Design without Priors Part III The Worst Case

  73. Analysis Framework Recall Goal: Truthful profit maximizing basic auction. 42 P RIOR - FREE M ECHANISM D ESIGN – J UNE 5, 2005

Recommend


More recommend