optimal harvesting with coupled population and price
play

Optimal Harvesting with Coupled Population and Price Dynamics Floyd - PowerPoint PPT Presentation

Optimal Harvesting with Coupled Population and Price Dynamics Floyd B. Hanson Laboratory for Advanced Computing University of Illinois at Chicago and Dennis Ryan Division of Science and Mathematics McKendree College SIAM 50th Anniversary


  1. Optimal Harvesting with Coupled Population and Price Dynamics Floyd B. Hanson ∗ Laboratory for Advanced Computing University of Illinois at Chicago and Dennis Ryan Division of Science and Mathematics McKendree College SIAM 50th Anniversary Meeting 08-12 July 2002 in Philadelphia MS26 Control Applications in Mathematical Biology ∗ Work supported in part by National Science Foundation Computational Mathematics Program under grants DMS-93-01107, DMS-96-26692, DMS-99-73231, DMS-02-07081. Hanson and Ryan — 1 — UIC and McKendree

  2. Overview 1. Noninflationary, Deterministic Model. 2. Inflationary, Stochastic Control Model. 3. Numerical Approximations. 4. Numerical Results. 5. Conclusions. Hanson and Ryan — 2 — UIC and McKendree

  3. Outline of Abstract • Optimal Control of Stochastic Resource in Continuous Time. • Model Effects of Large Random Price Fluctuations. • Influence of Continuous growth and Jump Stochastic Noise. • Computational Stochastic Dynamic Programming. • Pronounced Effect of Inflationary Prices on Optimal Return. Hanson and Ryan — 3 — UIC and McKendree

  4. Part 1. Noninflationary, Deterministic Model: Introduction. 1.1. Ordinary Differential Equation (ODE): • Nonlinear (Logistic) Dynamics: d X( s ) = [ r 1 X( s )(1 − X( s ) /K ) − H( s )] ds, 0 < t < s < T. • Initial Conditions: X (0) = x 0 ; 0 < t < T • State Variable (Resource Size): X ( t ) = [ X i ( t )] 1 × 1 ; • BiLinear Control-State Dynamics Assumption (for Resource Harvesting): H ( t ) = q U ( t ) X ( t ) ; • q = Efficiency (Catchability) Coefficient; Hanson and Ryan — 4 — UIC and McKendree

  5. • Control Variable (Harvesting Effort): U( t ) = [ U i { X( t ) , t } ] 1 × 1 , U min ≤ U( t ) ≤ U max < ∞ ; • Growth Parameters: r 1 = Resource Intrinsic Growth Rate; K = Environment Carrying (Saturation) Capacity. Hanson and Ryan — 5 — UIC and McKendree

  6. 1.2. Quadratic Performance Index: � T e − δ ( s − t ) [ pq U( s )X( s ) − c (U( s ))] ds , V (X , U , t ) = t where • V ( x , u , t ) = Current Value of Future Resources (i.e., exp( δt ) times Present Value); • T = Time Horizon ( T ≥ t ); • δ = Nominal Discount Rate (NOT adjusted for inflation); • p = Price of Resource per Unit Harvest Rate ; • c ( u ) = c 1 u + c 2 u 2 = Quadratic Costs (Assume Increasing, Convex Quadratic Costs: c 1 > 0 and c 2 > 0); • Instantaneous Net Return: R ( x , u ) = pq ux − c ( u ) . Hanson and Ryan — 6 — UIC and McKendree

  7. 1.3. Deterministic Dynamic Programming: • Optimization Goal = Maximize Total Return: v ∗ (x , t ) = V (x , u ∗ , t ) = max [ V (x , u , t )] ; u • PDE of Deterministic Dynamic Programming: v ∗ t (x , t ) + r 1 x(1 − x /K )v ∗ x (x , t ) − δ v ∗ (x , t ) + S ∗ (x , t ) = 0; • Control Switching Term: S ∗ (x , t ) = max p − v ∗ h“ ” q ux − c 1 u − c 2 u 2 i x (x , t ) ; u • Regular (Unconstrained) Control: u R (x , t ) = ( p − v ∗ x (x , t )) q x − c 1 , c 2 > 0; 2 · c 2 Hanson and Ryan — 7 — UIC and McKendree

  8. • Optimal (Constrained) Control:   U max , U max ≤ u R (x , t )     u ∗ (x , t ) =   ; u R (x , t ) , U min ≤ u R (x , t ) ≤ U max     U min , u R (x , t ) ≤ U min   v ∗ ( x , T ) = 0; • Final Boundary Condition: • Extinction Natural Boundary Condition: v ∗ (0 , t ) = − ( c 1 + c 2 U min ) U min “ 1 − e − δ ( T − t ) ” , δ > 0 . δ Hanson and Ryan — 8 — UIC and McKendree

  9. Part 2. Inflationary, Stochastic Control Model 2.1. Stochastic Dynamics Equation (SDE (1)): • Nonlinear Dynamics with Gaussian (G) and Poisson (Z) Noise: d X( s ) = [ r 1 X( s )(1 − X( s ) /K ) − H( s )] ds n � + σ 1 X( s ) dW 1 ( s ) + X( s ) a j dZ j ( s, f j ) , j =1 X( t ) = x , • Initial Conditions: X (0) = x 0 , t 0 < t < s < T ; • Gaussian (Wiener) Noise (Zero Mean and Normalized): E [ dW 1 ( t )] = 0 , V ar [ dW 1 ( t )] = dt σ 1 ≤ 0 ; Hanson and Ryan — 9 — UIC and McKendree

  10. • Poisson (Jump) Noise: E [ dZ j ( t, f j )] = f j dt , V ar [ dZ j ( t, f j )] = f j dt , 1 ≤ j ≤ n , where f j = Jump Rate and a j = Jump Amplitude Coefficient ( − 1 < a j ); • Independent (Uncorrelated) Processes Assumption: Cov [ dW 1 ( t ) , dZ j ( t, f j )] = 0 , Cov [ dZ j ( t, f j ) , dZ j ′ ( t, f j ′ )] = δ j,j ′ f j dt ; Hanson and Ryan — 10 — UIC and McKendree

  11. 2.2. Inflationary Factor Model: • Nonlinear Supply–Demand Model Relation: � p 0 � P( t ) = H ( t ) + p 1 Y( t ) , * P ( t ) · H ( t ) = Gross Return on Harvest; * p 0 = Supply–Demand Price Coefficient; * p 1 = Constant Price per Unit Harvest; * Y ( t ) = Fluctuating Inflationary Factor; • Linear Fluctuating Inflationary Factor SDE (2): m X d Y( s ) = r 2 Y( s ) ds + σ 2 Y( s ) dW 2 ( s ) + Y( s ) b j dQ j ( s ; g j ) , j =1 * Y ( t ) = y ; * r 2 = Annual Rate of Inflation without Fluctuations; * g j = j th component of Inflationary Jump Rate; * b j = j th component of Jump Amplitude Coefficient; Hanson and Ryan — 11 — UIC and McKendree

  12. • Inflationary Gaussian (Wiener) Noise: E [ dW 2 ( t )] = 0 , V ar [ dW 2 ( t )] = dt σ 2 ≤ 0 ; • Inflationary Poisson (Jump) Noise: E [ dQ j ( t, g j )] = g j dt , V ar [ dQ j ( t, g j )] = g j dt , 1 ≤ j ≤ m ; • Independent (Uncorrelated) Processes Assumption: Cov [ dW 2 ( t ) , dQ j ( t, g j )] = 0 , Cov [ dQ j ( t, g j ) , dQ j ′ ( t, g j ′ )] = δ j,j ′ g j dt ; Hanson and Ryan — 12 — UIC and McKendree

  13. 5 4 P, Price (US Dollars per Kilogram) 3 2 1 1940 1950 1960 1970 1980 Year Figure 1: Pacific halibut prices in USdollars per kilogram for each year from 1935 to 1985 (Raw Data: IPHC 1984 and 1985 Annual Reports). Hanson and Ryan — 13 — UIC and McKendree

  14. 40 35 30 H, Catch (Million Kilograms) 25 20 15 10 5 0 1940 1950 1960 1970 1980 Year Figure 2: U.S.-Canadian catch in millions of kilograms for each year from 1935 to 1985 (Raw Data: IPHC 1984 and 1985 Annual Reports). Hanson and Ryan — 14 — UIC and McKendree

  15. 4 P, Price (US Dollars per Kilogram) 3 2 1 10 15 20 25 30 35 H, Catch (Million Kilograms) Figure 3: Pacific halibut price in USdollars per kilogram versus catch in millions of kilograms for years from 1935 to 1985. Linear regression for price times catch as a function of catch from 1980 to 1985 displayed as smooth hyperbolic price curve. (Raw Data: IPHC 1984 and 1985 Annual Reports). Hanson and Ryan — 15 — UIC and McKendree

  16. 2.3. Mean Quadratic Performance Index: »Z T e − δ ( s − t ) [( p 0 + p 1 q U( s )X( s ))Y( s ) V (x , y , u , t ) = E t – − c (U( s ))] ds | X( t ) = x , Y( t ) = y , U( t ) = u , • V ( x , y , u , t ) = Expected Current Value of Future Resources (i.e., exp( δt ) times Present Value); • { x , y } = 2-Dim State of Inflationary Stochastic Dynamics ; • T = Time Horizon ( T ≥ t ); • δ = Nominal Discount Rate (NOT adjusted for inflation); Hanson and Ryan — 16 — UIC and McKendree

  17. 2.4. Stochastic Dynamic Programming: • Optimization Goal = Maximize Total Return: v ∗ (x , y , t ) = V (x , y , u ∗ , t ) = max � � V (x , y , u , t ) ; u • PDE of Stochastic Dynamic Programming: v ∗ t (x , y , t ) + r 1 x(1 − x /K )v ∗ x (x , y , t ) − δ v ∗ (x , y , t ) 0 = σ 2 1 x 2 X v ∗ v ∗ ` − v ∗ (x , y , t ) ˆ ´ ˜ + xx + f j (1 + a j )x , y , t 2 j y + σ 2 2 y 2 r 2 yv ∗ v ∗ X v ∗ (x , (1 + b j )y , t ) − v ∗ (x , y , t ) ˆ ˜ + yy + g j 2 j S ∗ (x , y , t ) , + by General Itˆ o Chain Rule; • Control Switching Term: x (x , y , t ) ´ q ux − c 1 u − c 2 u 2 ˜ ; S ∗ (x , y , t ) = max ˆ p 0 y + ` p 1 y − v ∗ u Hanson and Ryan — 17 — UIC and McKendree

  18. 2.4.1. More Stochastic Dynamic Programming: • Regular (Unconstrained) Control: u R (x , y , t ) = ( p 1 y − v ∗ x (x , y , t )) q x − c 1 , c 2 > 0; 2 c 2 • Optimal (Constrained) Control: 8 9 U max , U max ≤ u R (x , y , t ) > > > > u ∗ (x , y , t ) = < = ; u R (x , y , t ) , U min ≤ u R (x , y , t ) ≤ U max > > > > U min , u R (x , y , t ) ≤ U min : ; v ∗ ( x , y , T ) = 0; • Final Boundary Condition: • Extinction Natural Boundary Condition*: v ∗ (0 , 0 , t ) = − ( c 1 + c 2 U min ) U min “ 1 − e − δ ( T − t ) ” , δ > 0 . δ * see Kushner and Dupuis (1992) for proper handling of stochastic reflecting boundary conditions. Hanson and Ryan — 18 — UIC and McKendree

  19. Part 3. Numerical Approximations 3.1 Basic Hybrid Numerical Procedures. • Extrapolated, Predictor-Corrector for Nonlinear Iteration. • Crank-Nicolson Implicit for 2nd Order in Time and State. • Modifications for Poisson Functional Terms. • Modifications for Optimization in Switching Term. Hanson and Ryan — 19 — UIC and McKendree

Recommend


More recommend