online colouring problems in overlap graphs and their
play

Online Colouring Problems in Overlap Graphs and their Complements e - PowerPoint PPT Presentation

Online Colouring Problems in Overlap Graphs and their Complements e g n a , m e c e n D e c i c r S a M f o l o o h c S , y t i s r e v n i U T I M a l i R a r t s u A , e n r u o b u e l


  1. Online Colouring Problems in Overlap Graphs and their Complements e g n a , m e c e n D e c i c r S a M f o l o o h c S , y t i s r e v n i U T I M a l i R a r t s u A , e n r u o b u e l a . M u d e . t i m r @ e g n a m e d . c r a m , n e s l O n i r t a M , y t s i r e v i n U s u h r a A , H C E T B k r a m n e D k d . u a . h c e t b @ s h o e d n a g l i n t a r B a a , m h k a D , 8 0 1 2 h r c a M n , o t i a u t p m o C d n a s m h i t o r g l A M : O C L A W t a d e n t e s e P r M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018

  2. Online Colouring Problems in Overlap Graphs and their Complements (the art of BBQ down under) e g n a , m e c e n D e c i c r S a M f o l o o h c S , y t i s r e v n i U T I M a l i R a r t s u A , e n r u o b u e l a . M u d e . t i m r @ e g n a m e d . c r a m , n e s l O n i r t a M , y t s i r e v i n U s u h r a A , H C E T B k r a m n e D k d . u a . h c e t b @ o n i t r a m M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018

  3. Motivation 1: stacking problem M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 3

  4. Stacking problem M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 4

  5. Stacking problem 5/12 – 15/12 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 5

  6. Stacking problem 18/09 5/12 – 15/12 18/09 – 26/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 6

  7. Stacking problem 19/09 19/09–30/09 5/12 – 15/12 18/09 – 26/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 7

  8. Stacking problem 26/09 19/09 – 30/09 26/09 5/12 – 15/12 18/09 – 26/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 8

  9. Stacking problem 19/09 5/12 – 15/12 18/09 – 26/09 19/09–30/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 9

  10. Stacking problem 20/09 20/09 – 28/09 5/12 – 15/12 18/09 – 26/09 19/09–30/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 10

  11. Stacking problem 27/09 20/09 – 28/09 5/12 – 15/12 19/09–30/09 6/12 – 21/12 27/09 – 5/10 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 11

  12. Related graph problem 18 19 20 26 27 28 30 5/10 20/09 – 28/09 27/09 – 5/10 19/09–30/09 18/09 – 26/09 6/12 – 21/12 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 12

  13. Related graph problem: incompatibility graph Overlap graph 18 19 20 26 27 28 30 5/10 27/09 – 5/10 19/09–30/09 18/09 – 26/09 20/09 – 28/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 13

  14. Overlap graphs as intersection graphs of chords (circle graphs) A D B D C F E C E F A B A B D C F E M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 14

  15. Related graph problem: min colouring Overlap graph 18 19 20 26 27 28 30 5/10 Stack 2 Stack 1 27/09 – 5/10 19/09–30/09 18/09 – 26/09 20/09 – 28/09 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 15

  16. Motivation 2: track assignment M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 16

  17. A particular case 5 2 1 4 3 6 Midnight condition Permutation graph 1 1 2 2 3 3 4 4 5 5 6 6 18 19 20 21 22 23 1 2 3 4 5 6 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 17

  18. A particular case 5 2 1 4 3 6 Midnight condition Permutation graph 1 2 3 4 5 6 18 19 20 21 22 23 1 2 3 4 5 6 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 18

  19. A particular case 5 2 1 4 3 6 Midnight condition Permutation graph 18 19 20 21 22 23 1 2 3 4 5 6 5 2 1 4 3 6 M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 19

  20. Stacking problem / track assignment • Assign each item on a stack • Allays put / remove items on the top a stack (Last in first out) • The related incompatibility graph is an overlap / permutation graph • Minimising the number of stacks Minimum colouring overlap / permutation graphs M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 20

  21. On-line stacking / track assignment • Nothing is known about the future (items are known when they arrive) • Departure time known at arrival • Assign stack at arrival, never on top of an item leaving earlier On-line colouring overlap / permutation graphs • Eventually additional constraints: e.g. fixed capacity for each stack • Graph defines by intervals revealed from left to right M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 21

  22. H-colouring in overlap graphs M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 22

  23. H-colouring in overlap graphs M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 23

  24. H-colouring in overlap graphs M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 24

  25. M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 25

  26. M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 26

  27. M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 27

  28. Main ingredient: the BBQ strategy A brochette M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 28

  29. Main ingredient: the BBQ strategy A BBQ arrangement M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 29

  30. Main ingredient: the BBQ strategy M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 30

  31. Main ingredient: the BBQ strategy M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 31

  32. The BBQ strategy: main idea M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 32

  33. The BBQ strategy: main idea M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 33

  34. BBQ strategy : slice the steak into BBQ arrangements M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 34

  35. The BBQ strategy: • Partition any instance into a minimum number of BBQ arrangements • Solve independently each arrangement using a specific colour set • Do it on-line M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 35

  36. Decomposition strategy: (assume first and are known) An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 36

  37. Decomposition strategy An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 37

  38. On-line algorithm: (unknown and ) An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 38

  39. On-line reduction An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 39

  40. M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 40

  41. Application to approximation M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 41

  42. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 42

  43. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 43

  44. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 44

  45. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 45

  46. Hardness result Bipartition An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 46

  47. Induction step Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 47

  48. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 48

  49. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 49

  50. Hardness result An ongoing project with Martin Olsen, Aarhus University, Denmark M. Demange – Monash Discrete Math Research Group meeting – 18/09/2018 50

Recommend


More recommend