on the disjoint structure of twisted sums
play

On the disjoint structure of twisted sums Workshop on Banach spaces - PowerPoint PPT Presentation

On the disjoint structure of twisted sums Workshop on Banach spaces and Banach lattices - ICMAT Wilson A. Cu ellar (Universidade de S ao Paulo) Joint work with J. M. F. Castillo, V. Ferenczi and Y. Moreno September 10 of 2019 Supported by


  1. On the disjoint structure of twisted sums Workshop on Banach spaces and Banach lattices - ICMAT Wilson A. Cu´ ellar (Universidade de S˜ ao Paulo) Joint work with J. M. F. Castillo, V. Ferenczi and Y. Moreno September 10 of 2019 Supported by FAPESP 2016/25574-8; 2018/18593-1

  2. Exact sequences of Banach spaces A twisted sum of Banach spaces Y and X is a short exact sequence j q 0 − − − − → Y − − − − → Z − − − − → X − − − − → 0 , where Z is a quasi-Banach space and the arrows are bounded linear maps.

  3. Exact sequences of Banach spaces A twisted sum of Banach spaces Y and X is a short exact sequence j q 0 − − − − → Y − − − − → Z − − − − → X − − − − → 0 , where Z is a quasi-Banach space and the arrows are bounded linear maps. j ( Y ) is closed subspace of Z such that Z/j ( Y ) ∼ = X

  4. Exact sequences of Banach spaces A twisted sum of Banach spaces Y and X is a short exact sequence j q 0 − − − − → Y − − − − → Z − − − − → X − − − − → 0 , where Z is a quasi-Banach space and the arrows are bounded linear maps. j ( Y ) is closed subspace of Z such that Z/j ( Y ) ∼ = X Z is said to be a twisted sum of Y and X .

  5. Exact sequences of Banach spaces A twisted sum of Banach spaces Y and X is a short exact sequence j q 0 − − − − → Y − − − − → Z − − − − → X − − − − → 0 , where Z is a quasi-Banach space and the arrows are bounded linear maps. j ( Y ) is closed subspace of Z such that Z/j ( Y ) ∼ = X Z is said to be a twisted sum of Y and X . The twisted sum is trivial when j ( Y ) is complemented in Z ( Z ∼ = Y ⊕ X )

  6. Singular twisted sums A twisted sum j q 0 − − − − → Y − − − − → Z − − − − → X − − − − → 0 , is said to be singular if for every infinite dimensional closed subspace W of X the exact sequence j q → q − 1 ( W ) 0 − − − − → Y − − − − − − − − → W − − − − → 0 . is nontrivial (i.e. Y is not complemented in q − 1 ( W ) )

  7. Singular twisted sums A twisted sum j q 0 − − − − → Y − − − − → Z − − − − → X − − − − → 0 , is said to be singular if for every infinite dimensional closed subspace W of X the exact sequence j q → q − 1 ( W ) 0 − − − − → Y − − − − − − − − → W − − − − → 0 . is nontrivial (i.e. Y is not complemented in q − 1 ( W ) ) Proposition The twisted sum is singular ⇐ ⇒ q is strictly singular. ( q | M is never an isomorphism for inf. dim. subspace M of X )

  8. Quasi-linear maps Definition An homogeneous map Ω : X − → Y is quasi-linear if there exists C > 0 such that for every x 1 , x 2 ∈ X � Ω( x 1 + x 2 ) − Ω x 1 − Ω x 2 � ≤ C ( � x 1 � + � x 2 � ) .

  9. Quasi-linear maps Definition An homogeneous map Ω : X − → Y is quasi-linear if there exists C > 0 such that for every x 1 , x 2 ∈ X � Ω( x 1 + x 2 ) − Ω x 1 − Ω x 2 � ≤ C ( � x 1 � + � x 2 � ) . A quasi-linear map Ω induces a quasi-normed space Y ⊕ Ω X = ( Y × X, � · � Ω ) by � ( y, x ) � Ω = � y − Ω x � Y + � x � X ,

  10. Quasi-linear maps Definition An homogeneous map Ω : X − → Y is quasi-linear if there exists C > 0 such that for every x 1 , x 2 ∈ X � Ω( x 1 + x 2 ) − Ω x 1 − Ω x 2 � ≤ C ( � x 1 � + � x 2 � ) . A quasi-linear map Ω induces a quasi-normed space Y ⊕ Ω X = ( Y × X, � · � Ω ) by � ( y, x ) � Ω = � y − Ω x � Y + � x � X , and an exact sequence j q 0 − − − − → Y − − − − → Y ⊕ Ω X − − − − → X − − − − → 0 .

  11. Quasi-linear maps Definition An homogeneous map Ω : X − → Y is quasi-linear if there exists C > 0 such that for every x 1 , x 2 ∈ X � Ω( x 1 + x 2 ) − Ω x 1 − Ω x 2 � ≤ C ( � x 1 � + � x 2 � ) . A quasi-linear map Ω induces a quasi-normed space Y ⊕ Ω X = ( Y × X, � · � Ω ) by � ( y, x ) � Ω = � y − Ω x � Y + � x � X , and an exact sequence j q 0 − − − − → Y − − − − → Y ⊕ Ω X − − − − → X − − − − → 0 . Kalton - Peck [1979] Every twisted sum can be represented on this way.

  12. Example: Kalton-Peck map Kalton-Peck map Ω p : ℓ p � ℓ p , 0 < p < + ∞ , defined by Ω p ( x ) = x log | x | � x � p

  13. Example: Kalton-Peck map Kalton-Peck map Ω p : ℓ p � ℓ p , 0 < p < + ∞ , defined by Ω p ( x ) = x log | x | � x � p is singular: Kalton - Peck [1979] For 1 < p < ∞ . Castillo-Moreno [2002] For p = 1 . Cabello-Castillo-Su´ arez [2012] For 0 < p < ∞ .

  14. K¨ othe function spaces Definition Let ( S, Σ , µ ) be a complete σ -finite measure space. L 0 = L 0 ( S, Σ , µ ) locally integrable real valued functions (mod a.e.) A K¨ othe function space K is a Banach space of functions in L 0 such that 1. If | f ( ω ) | ≤ g ( ω ) a.e. on S and g ∈ K , then f ∈ K and � f � ≤ � g � ; 2. χ σ ∈ K for every σ ∈ Σ with µ ( σ ) < ∞ .

  15. K¨ othe function spaces Definition Let ( S, Σ , µ ) be a complete σ -finite measure space. L 0 = L 0 ( S, Σ , µ ) locally integrable real valued functions (mod a.e.) A K¨ othe function space K is a Banach space of functions in L 0 such that 1. If | f ( ω ) | ≤ g ( ω ) a.e. on S and g ∈ K , then f ∈ K and � f � ≤ � g � ; 2. χ σ ∈ K for every σ ∈ Σ with µ ( σ ) < ∞ . Examples Banach spaces with 1-unconditional basis L p [0 , 1] (1 ≤ p < ∞ )

  16. Complex method of interpolation Let X = ( X 0 , X 1 ) be a compatible pair of K¨ othe function spaces F = F ( X 0 , X 1 ) the space of analytic functions on S = { z ∈ C : 0 < ℜ ( z ) < 1 } Such that 1. f ( j + it ) ∈ X j for every t ∈ R and j = 0 , 1 . 2. t �→ f ( j + it ) ∈ X j is continuous and bounded ( j = 0 , 1 ) � � � f � = max sup � f ( it ) � X 0 , sup � f (1 + it ) � X 1 t ∈ R t ∈ R For 0 < θ < 1 , the complex interpolation space X θ is defined as X θ = { f ( θ ) : f ∈ F} � x � X θ = inf {� f � F : f ∈ F , f ( θ ) = x } X θ is identified isometrically with the quotient space X θ = F / { f ∈ F : f ( θ ) = 0 }

  17. Derived space Definition. An L ∞ -centralizer (resp. an ℓ ∞ -centralizer) on a K¨ othe function (resp. sequence) space K is a homogeneous map Ω : K → L 0 such that there is a constant C such that, for every f ∈ L ∞ (resp. ℓ ∞ ) and for every x ∈ K . 1.) Ω( fx ) − f Ω( x ) ∈ K , 2.) � Ω( fx ) − f Ω( x ) � K ≤ C � f � ∞ � x � K .

  18. Derived space Definition. An L ∞ -centralizer (resp. an ℓ ∞ -centralizer) on a K¨ othe function (resp. sequence) space K is a homogeneous map Ω : K → L 0 such that there is a constant C such that, for every f ∈ L ∞ (resp. ℓ ∞ ) and for every x ∈ K . 1.) Ω( fx ) − f Ω( x ) ∈ K , 2.) � Ω( fx ) − f Ω( x ) � K ≤ C � f � ∞ � x � K . Notation. Ω : K � K .

  19. Derived space Definition. An L ∞ -centralizer (resp. an ℓ ∞ -centralizer) on a K¨ othe function (resp. sequence) space K is a homogeneous map Ω : K → L 0 such that there is a constant C such that, for every f ∈ L ∞ (resp. ℓ ∞ ) and for every x ∈ K . 1.) Ω( fx ) − f Ω( x ) ∈ K , 2.) � Ω( fx ) − f Ω( x ) � K ≤ C � f � ∞ � x � K . Notation. Ω : K � K . Kalton [1992] Every centralizer induce an exact sequence  q 0 − − − − → K − − − − → d Ω K − − − − → K − − − − → 0 where d Ω K = { ( w, x ) : w ∈ L 0 , x ∈ K : w − Ω x ∈ K} endowed with the quasi-norm � ( w, x ) � d Ω K = � x � K + � w − Ω x � K

  20. Derived space [Rochberg and Weiss] Associated to the scale X θ a centralizer Ω θ : X θ � X θ .

  21. Derived space [Rochberg and Weiss] Associated to the scale X θ a centralizer Ω θ : X θ � X θ . Examples • The Kalton-Peck spaces can be obtained as derived spaces: ℓ p = ( ℓ ∞ , ℓ 1 ) θ , with p = 1 /θ Ω θ = α Ω p

  22. Derived space [Rochberg and Weiss] Associated to the scale X θ a centralizer Ω θ : X θ � X θ . Examples • The Kalton-Peck spaces can be obtained as derived spaces: ℓ p = ( ℓ ∞ , ℓ 1 ) θ , with p = 1 /θ Ω θ = α Ω p • Kalton-Peck functions version L p = ( L ∞ , L 1 ) θ , with p = 1 /θ � � | f | Ω θ ( f ) = f log � f � p

  23. Singularity and centralizers Examples • J. Su´ arez [2013] The Kalton-Peck centralizer on L p [0 , 1] is not singular.

  24. Singularity and centralizers Examples • J. Su´ arez [2013] The Kalton-Peck centralizer on L p [0 , 1] is not singular. • F. Cabello [2014] There is no singular L ∞ -centralizer on L p [0 , 1]

  25. Singularity and centralizers Examples • J. Su´ arez [2013] The Kalton-Peck centralizer on L p [0 , 1] is not singular. • F. Cabello [2014] There is no singular L ∞ -centralizer on L p [0 , 1] Proposition (CCFM) There is no singular centralizer on admissible superreflexive K¨ othe space.

Recommend


More recommend