on stability of special solutions for quasi linear
play

On stability of special solutions for quasi-linear equations of - PowerPoint PPT Presentation

On stability of special solutions for quasi-linear equations of traffic flow Podoroga Anastasia Vladimirovna, Tikhonov Ivan Vladimirovich CMC MSU department of Mathematical Physics Dolgoprudny, 12 Sep. 2015 15 Sep. 2016 Podoroga A. V.,


  1. On stability of special solutions for quasi-linear equations of traffic flow Podoroga Anastasia Vladimirovna, Tikhonov Ivan Vladimirovich CMC MSU department of Mathematical Physics Dolgoprudny, 12 Sep. 2015 – 15 Sep. 2016 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 1 / 46

  2. Main parameters ρ ( x, t ) — flow density, v ( x, t ) — flow velocity, q ( x, t ) — flow rate . x Moscow, MRR, north. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 2 / 46

  3. Interface of the program “Cars” Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 3 / 46

  4. Ring road Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 4 / 46

  5. Interface of the program “Cars” Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 5 / 46

  6. Jam movement on ring road ( N = 140 cars, L = 5 km, T = 3 hours) Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 6 / 46

  7. Tendency to stable condition L = 20 km, T = 6 h. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 7 / 46

  8. Tendency to stable condition L = 20 km, T = 12 h. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 8 / 46

  9. Fundamental diagram q = Q ( ρ ) , Q is concave function , Q ( ρ ) > 0 , 0 < ρ < ρ max , Q (0) = 0 , Q ( ρ max ) = 0 . Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 9 / 46

  10. Quasi-linear differential equation Main equation of road traffic: ∂t + ∂Q ( ρ ) ∂ρ = 0 , ρ = ρ ( x, t ) . ∂x Integral identity: β d � ρ ( x, t ) dx = Q ( ρ ( α, t )) − Q ( ρ ( α, t )) , dt α for a.e. α, β ∈ R , t � 0 . Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 10 / 46

  11. Cauchy problem  ∂ρ ∂t + ∂Q ( ρ ) = 0 , t > 0 , x ∈ R ,  ∂x ρ ( x, 0) = µ ( x ) ,  with initial function 0 � µ ( x ) � ρ max , x ∈ R . Technical solution of this problem is ρ = µ ( x − k ( ρ ) t ) , where k = k ( ρ ) = Q ′ ( ρ ) is a slope of the characteristic. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 11 / 46

  12. Nagel–Schreckenberg diagram K. Nagel, M. Schreckenberg. A cellular automaton model for freeway traffic . Journal de Physique I France. 1992. Vol. 2. No 12. P. 2221–2229. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 12 / 46

  13. Analytical representation � 0 � ρ � ρ ∗ , k 1 ρ, Q ( ρ ) = ρ ∗ � ρ � ρ max . k 2 ( ρ max − ρ ) , k 1 = q max q max ρ ∗ , k 2 = ρ max − ρ ∗ . Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 13 / 46

  14. Typical solutions 1 If µ ( x ) � ρ ∗ on R , then ρ ( x, t ) = µ ( x − k 1 t ) (forward wave). 2 If µ ( x ) � ρ ∗ on R , then ρ ( x, t ) = µ ( x + k 2 t ) (backward wave). Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 14 / 46

  15. Forward wave for t = 0 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 15 / 46

  16. Forward wave for t = 0 . 3 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 16 / 46

  17. Forward wave for t = 0 . 6 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 17 / 46

  18. Backward wave for t = 0 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 18 / 46

  19. Backward wave for t = 0 . 7 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 19 / 46

  20. Backward wave for t = 1 . 4 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 20 / 46

  21. Backward wave for t = 2 . 1 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 21 / 46

  22. Combined solution: depression wave for t = 0 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 22 / 46

  23. Combined solution: depression wave for t = 0 . 2 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 23 / 46

  24. Combined solution: depression wave for t = 0 . 4 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 24 / 46

  25. Combined solution: depression wave for t = 0 . 6 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 25 / 46

  26. Combined solution: shock wave for t = 0 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 26 / 46

  27. Combined solution: shock wave for t = 0 . 4 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 27 / 46

  28. Combined solution: shock wave for t = 0 . 8 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 28 / 46

  29. Combined solution: shock wave for t = 1 . 2 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 29 / 46

  30. Hugoniot condition Speed of the shock wave is ψ ′ ( t ) = Q ( ρ right ) − Q ( ρ left ) , ρ right − ρ left where ψ ( t ) is a boundary of the shock wave. Integral identity: β d � ρ ( x, t ) dx = Q ( ρ ( α, t )) − Q ( ρ ( α, t )) . dt α Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 30 / 46

  31. Ring road idea Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 31 / 46

  32. Specifics of the ring road L is length of the ring road. All functions are L -periodic for x . The amount of cars on the road is main value L � µ ( x ) dx. M ≡ 0 Two cases: M < ρ ∗ L (almost free movement); 1 M > ρ ∗ L (crowded traffic). 2 Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 32 / 46

  33. Stability of solutions on t → ∞ L � µ ( x ) dx. M ≡ 0 Theorem There is an alternative. 1 If M < Lρ ∗ , then ∃ t ∗ > 0 such that ρ ( x, t ) = f ( x − k 1 t ) , ∀ t � t ∗ , where 0 � f ( s ) � ρ ∗ for ∀ s ∈ R . 2 If M > Lρ ∗ , then ∃ t ∗ > 0 such that ρ ( x, t ) = g ( x + k 2 t ) , ∀ t � t ∗ , where ρ ∗ � g ( s ) � ρ max for ∀ s ∈ R . Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 33 / 46

  34. Combinatorial result Lemma In every set of real numbers a 1 , a 2 , . . . , a n , with a 1 + a 2 + . . . + a n > 0 , there exists a dominant element a k , such as a k > 0 , a k + a k +1 > 0 , a k + a k +1 + a k +2 > 0 , . . . . . . . . . a k + a k +1 + a k +2 + . . . + a k + n − 1 > 0 . Index changes cyclically. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 34 / 46

  35. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 35 / 46

  36. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 36 / 46

  37. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 37 / 46

  38. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 38 / 46

  39. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 39 / 46

  40. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 40 / 46

  41. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 41 / 46

  42. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 42 / 46

  43. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 43 / 46

  44. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 44 / 46

  45. Example Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 45 / 46

  46. Podoroga A. V., Tikhonov I. V. (MSU) Simulation of traffic flow Dolgoprudny, 2016 46 / 46

Recommend


More recommend