on some discontinuous control problems
play

On Some Discontinuous Control Problems Dan Goreac 1 Universit - PowerPoint PPT Presentation

Deterministic framework Stochastic framework On Some Discontinuous Control Problems Dan Goreac 1 Universit Paris-Est Marne-la-Valle Rosco, March 23 rd , 2010 1 (joint work with Oana-Silvia Serea (CMAP)) Dan Goreac On Some Discontinuous


  1. An example Deterministic framework Main result Stochastic framework Idea of the proof Idea of the proof of (c) 1 Choose x ε 2 cl ( R ( T , t 0 ) x 0 ) s.t. h ( x ε ) < V ( t 0 , x 0 ) + ε . De…ne h ε : R N � ! R l.s.c. � h ( x ε ) , if x = x ε , h ε ( x ) = sup x h ( x ) , otherwise. Dan Goreac On Some Discontinuous Control Problems

  2. An example Deterministic framework Main result Stochastic framework Idea of the proof Idea of the proof of (c) 1 Choose x ε 2 cl ( R ( T , t 0 ) x 0 ) s.t. h ( x ε ) < V ( t 0 , x 0 ) + ε . De…ne h ε : R N � ! R l.s.c. � h ( x ε ) , if x = x ε , h ε ( x ) = sup x h ( x ) , otherwise. Value function V ε ( t , x ) = inf f h ε ( y ) : y 2 cl ( R ( T , t ) x ) g , satis…es: V ε ( t 0 , x 0 ) = h ( x ε ) � V ( t 0 , x 0 ) + ε Dan Goreac On Some Discontinuous Control Problems

  3. An example Deterministic framework Main result Stochastic framework Idea of the proof Idea of the proof of (c) 2 De…ne g : R N � ! R u.s.c. � V ( t 0 , x 0 ) , if x 2 cl ( R ( T , t 0 ) x 0 ) , g ( x ) = inf y 2 R N h ( y ) , otherwise. Dan Goreac On Some Discontinuous Control Problems

  4. An example Deterministic framework Main result Stochastic framework Idea of the proof Idea of the proof of (c) 2 De…ne g : R N � ! R u.s.c. � V ( t 0 , x 0 ) , if x 2 cl ( R ( T , t 0 ) x 0 ) , g ( x ) = inf y 2 R N h ( y ) , otherwise. Consider V g V g ( t , x ) = inf f g ( y ) : y 2 cl ( R ( T , t ) x ) g , Dan Goreac On Some Discontinuous Control Problems

  5. An example Deterministic framework Main result Stochastic framework Idea of the proof Idea of the proof of (c) 2 De…ne g : R N � ! R u.s.c. � V ( t 0 , x 0 ) , if x 2 cl ( R ( T , t 0 ) x 0 ) , g ( x ) = inf y 2 R N h ( y ) , otherwise. Consider V g V g ( t , x ) = inf f g ( y ) : y 2 cl ( R ( T , t ) x ) g , V g ( T , � ) � g ( � ) � h ( � ) and V g ( t 0 , x 0 ) = V ( t 0 , x 0 ) Dan Goreac On Some Discontinuous Control Problems

  6. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation ( Ω , F , P ) complete probability Dan Goreac On Some Discontinuous Control Problems

  7. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation ( Ω , F , P ) complete probability a …ltration F = ( F t ) t � 0 satisfying the usual assumptions Dan Goreac On Some Discontinuous Control Problems

  8. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation ( Ω , F , P ) complete probability a …ltration F = ( F t ) t � 0 satisfying the usual assumptions W be a standard, d -dimensional Brownian motion Dan Goreac On Some Discontinuous Control Problems

  9. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation ( Ω , F , P ) complete probability a …ltration F = ( F t ) t � 0 satisfying the usual assumptions W be a standard, d -dimensional Brownian motion admissible (strong) control u 2 U : U -valued, progressively measurable Dan Goreac On Some Discontinuous Control Problems

  10. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation ( Ω , F , P ) complete probability a …ltration F = ( F t ) t � 0 satisfying the usual assumptions W be a standard, d -dimensional Brownian motion admissible (strong) control u 2 U : U -valued, progressively measurable � dX t , x , u = b ( s , X t , x , u , u s ) ds + σ ( s , X t , x , u , u s ) dW s , t � s � T , s s s X t , x , u = x 2 R N , t ( 2 ) Dan Goreac On Some Discontinuous Control Problems

  11. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Main assumptions b : R � R N � U � ! R N , σ : R � R N � U � ! R N � d Dan Goreac On Some Discontinuous Control Problems

  12. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Main assumptions b : R � R N � U � ! R N , σ : R � R N � U � ! R N � d (i) b , σ bounded, uniformly continuous Dan Goreac On Some Discontinuous Control Problems

  13. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Main assumptions b : R � R N � U � ! R N , σ : R � R N � U � ! R N � d (i) b , σ bounded, uniformly continuous (ii) 9 c > 0 s.t. j b ( t , x , u ) � b ( t , y , u ) j + j σ ( t , x , u ) � σ ( t , y , u ) j � c j x � y j and j b ( t , x , u ) � b ( s , x , u ) j + j σ ( t , x , u ) � σ ( s , x , u ) j � δ 0 2 , c j t � s j 8 ( t , s , x , y , u ) 2 [ 0 , T ] 2 � R 2 N � U . Dan Goreac On Some Discontinuous Control Problems

  14. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linear formulation in Lipschitz case Assume : h : R N � ! R is bounded and Lipschitz-continuous. Dan Goreac On Some Discontinuous Control Problems

  15. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linear formulation in Lipschitz case Assume : h : R N � ! R is bounded and Lipschitz-continuous. � � �� X t , x , u Value function V h ( t , x ) = inf u 2U E h . T Dan Goreac On Some Discontinuous Control Problems

  16. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linear formulation in Lipschitz case Assume : h : R N � ! R is bounded and Lipschitz-continuous. � � �� X t , x , u Value function V h ( t , x ) = inf u 2U E h . T V h is he unique viscosity solution in the class of linear-growth continuous functions of Dan Goreac On Some Discontinuous Control Problems

  17. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linear formulation in Lipschitz case Assume : h : R N � ! R is bounded and Lipschitz-continuous. � � �� X t , x , u Value function V h ( t , x ) = inf u 2U E h . T V h is he unique viscosity solution in the class of linear-growth continuous functions of 8 � � = 0 , x , DV h ( t , x ) , D 2 V h ( t , x ) � ∂ t V h ( t , x ) + H < for all ( t , x ) 2 ( 0 , T ) � R N , (HJB) , : V h ( T , � ) = h ( � ) on R N , H ( t , x , p , A ) = � � 1 � 2 Tr ( σσ � ( t , x , u ) A ) � h b ( t , x , u ) , p i sup u 2 U , Dan Goreac On Some Discontinuous Control Problems

  18. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 1 Linear programming tools: Stockbridge (90), Bhatt, Borkar (’96), Kurtz, Stockbridge (’98), Borkar, Gaitsgory (’05) Dan Goreac On Some Discontinuous Control Problems

  19. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 1 Linear programming tools: Stockbridge (90), Bhatt, Borkar (’96), Kurtz, Stockbridge (’98), Borkar, Gaitsgory (’05) ( t , x ) 2 [ 0 , T ) � R N , u 2 U , Dan Goreac On Some Discontinuous Control Problems

  20. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 1 Linear programming tools: Stockbridge (90), Bhatt, Borkar (’96), Kurtz, Stockbridge (’98), Borkar, Gaitsgory (’05) ( t , x ) 2 [ 0 , T ) � R N , u 2 U , γ t , x , u ( A � B � C � D ) = h R T i � � 1 t 1 A � B � C (( s , X t , x , u X t , x , u T � t E , u s )) ds P 2 D , s T Dan Goreac On Some Discontinuous Control Problems

  21. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 1 Linear programming tools: Stockbridge (90), Bhatt, Borkar (’96), Kurtz, Stockbridge (’98), Borkar, Gaitsgory (’05) ( t , x ) 2 [ 0 , T ) � R N , u 2 U , γ t , x , u ( A � B � C � D ) = h R T i � � 1 t 1 A � B � C (( s , X t , x , u X t , x , u T � t E , u s )) ds P 2 D , s T A � B � C � D � [ 0 , T ] � R N � U � R N , Borel sets. Dan Goreac On Some Discontinuous Control Problems

  22. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 1 Linear programming tools: Stockbridge (90), Bhatt, Borkar (’96), Kurtz, Stockbridge (’98), Borkar, Gaitsgory (’05) ( t , x ) 2 [ 0 , T ) � R N , u 2 U , γ t , x , u ( A � B � C � D ) = h R T i � � 1 t 1 A � B � C (( s , X t , x , u X t , x , u T � t E , u s )) ds P 2 D , s T A � B � C � D � [ 0 , T ] � R N � U � R N , Borel sets. � j y j 2 + j z j 2 � R γ t , x , u ( ds , dy , dv , dz ) � [ t , T ] � R N � U � R N � � j x j 2 + 1 C 0 . Dan Goreac On Some Discontinuous Control Problems

  23. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 1 Linear programming tools: Stockbridge (90), Bhatt, Borkar (’96), Kurtz, Stockbridge (’98), Borkar, Gaitsgory (’05) ( t , x ) 2 [ 0 , T ) � R N , u 2 U , γ t , x , u ( A � B � C � D ) = h R T i � � 1 t 1 A � B � C (( s , X t , x , u X t , x , u T � t E , u s )) ds P 2 D , s T A � B � C � D � [ 0 , T ] � R N � U � R N , Borel sets. � j y j 2 + j z j 2 � R γ t , x , u ( ds , dy , dv , dz ) � [ t , T ] � R N � U � R N � � j x j 2 + 1 C 0 . � [ t , T ] � R N � U � R N � γ t , x , u 2 P : 8 φ 2 � [ 0 , T ] � R N � C 1 , 2 , � � b ( T � t ) L v φ ( s , y ) R γ ( ds , dy , dv , dz ) = [ t , T ] � R N � U � R N + φ ( t , x ) � φ ( T , z ) 0 (Itô’s formula). Dan Goreac On Some Discontinuous Control Problems

  24. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 2 � � �� = X t , x , u J h ( t , x , u ) = E h R � [ t , T ] � R N � U , dz � T R N h ( z ) γ t , x , u . Dan Goreac On Some Discontinuous Control Problems

  25. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 2 � � �� = X t , x , u J h ( t , x , u ) = E h R � [ t , T ] � R N � U , dz � T R N h ( z ) γ t , x , u . Θ ( t , x ) = 8 � [ t , T ] � R N � U � R N � � [ 0 , T ] � R N � : 8 φ 2 C 1 , 2 > γ 2 P , > � � b > ( T � t ) L v φ ( s , y ) < R γ ( ds , dy , dv , dz ) = 0, [ t , T ] � R N � U � R N + φ ( t , x ) � φ ( T , z ) > � j y j 2 + j z j 2 � � � > R > j x j 2 + 1 : γ ( ds , dy , dv , dz ) � C 0 [ t , T ] � R N � U � R N Dan Goreac On Some Discontinuous Control Problems

  26. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation (Finite horizon) Occupational measures 2 � � �� = X t , x , u J h ( t , x , u ) = E h R � [ t , T ] � R N � U , dz � T R N h ( z ) γ t , x , u . Θ ( t , x ) = 8 � [ t , T ] � R N � U � R N � � [ 0 , T ] � R N � : 8 φ 2 C 1 , 2 > γ 2 P , > � � b > ( T � t ) L v φ ( s , y ) < R γ ( ds , dy , dv , dz ) = 0, [ t , T ] � R N � U � R N + φ ( t , x ) � φ ( T , z ) > � j y j 2 + j z j 2 � � � > R > j x j 2 + 1 : γ ( ds , dy , dv , dz ) � C 0 [ t , T ] � R N � U � R N � ( σσ � ) ( s , y , v ) D 2 φ ( s , y ) � L v φ ( s , y ) = 1 2 Tr + h b ( s , y , v ) , D φ ( s , y ) i + ∂ t φ ( s , y ) , Dan Goreac On Some Discontinuous Control Problems

  27. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linearized formulation R � [ t , T ] , R N , U , dz � h � ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , Dan Goreac On Some Discontinuous Control Problems

  28. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linearized formulation R � [ t , T ] , R N , U , dz � h � ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , dual formulation: η � ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup ; , : η � ( T � t ) L v φ ( s , y ) + h ( z ) � φ ( T , z ) + φ ( t , x ) , ( t , x ) 2 [ 0 , T ) � R N . Dan Goreac On Some Discontinuous Control Problems

  29. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linearized formulation R � [ t , T ] , R N , U , dz � h � ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , dual formulation: η � ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup ; , : η � ( T � t ) L v φ ( s , y ) + h ( z ) � φ ( T , z ) + φ ( t , x ) , ( t , x ) 2 [ 0 , T ) � R N . In in…nite horizon (discounted) setting : Buckdahn, G., Quincampoix (preprint) Dan Goreac On Some Discontinuous Control Problems

  30. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Linearized formulation R � [ t , T ] , R N , U , dz � h � ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , dual formulation: η � ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup ; , : η � ( T � t ) L v φ ( s , y ) + h ( z ) � φ ( T , z ) + φ ( t , x ) , ( t , x ) 2 [ 0 , T ) � R N . In in…nite horizon (discounted) setting : Buckdahn, G., Quincampoix (preprint) Theorem ) V h ( t , x ) = h � ( t , x ) = η � ( t , x ) , h Lipschitz, bounded = 8 ( t , x ) 2 [ 0 , T ) � R N . Dan Goreac On Some Discontinuous Control Problems

  31. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof ) V h ( t , x ) � h � ( t , x ) γ t , x , u 2 Θ ( t , x ) = Dan Goreac On Some Discontinuous Control Problems

  32. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof ) V h ( t , x ) � h � ( t , x ) γ t , x , u 2 Θ ( t , x ) = η � ( T � t ) L v φ ( s , y ) + h ( z ) � φ ( T , z ) + φ ( t , x ) integrate ) h � ( t , x ) � η � ( t , x ) . w.r.t. γ 2 Θ ( t , x ) = Dan Goreac On Some Discontinuous Control Problems

  33. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof ) V h ( t , x ) � h � ( t , x ) γ t , x , u 2 Θ ( t , x ) = η � ( T � t ) L v φ ( s , y ) + h ( z ) � φ ( T , z ) + φ ( t , x ) integrate ) h � ( t , x ) � η � ( t , x ) . w.r.t. γ 2 Θ ( t , x ) = approximate V h by smooth subsolutions V ε ; V ε ( t , x ) � C ε � η � ( t , x ) then ε ! 0 to get η � ( t , x ) � V h ( t , x ) Dan Goreac On Some Discontinuous Control Problems

  34. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Lower semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . Dan Goreac On Some Discontinuous Control Problems

  35. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Lower semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . h : R N � ! R is a lower semicontinuous function. Dan Goreac On Some Discontinuous Control Problems

  36. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Lower semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . h : R N � ! R is a lower semicontinuous function. � � j x j 2 + 1 9 c 2 R such that c � h ( x ) � � c , Dan Goreac On Some Discontinuous Control Problems

  37. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Lower semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . h : R N � ! R is a lower semicontinuous function. � � j x j 2 + 1 9 c 2 R such that c � h ( x ) � � c , Theorem V h is the smallest lower semicontinuous viscosity supersolution and V h ( t , x ) = η � ( t , x ) , 8 ( t , x ) 2 [ 0 , T ) � R N . Dan Goreac On Some Discontinuous Control Problems

  38. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , Dan Goreac On Some Discontinuous Control Problems

  39. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . Dan Goreac On Some Discontinuous Control Problems

  40. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ Dan Goreac On Some Discontinuous Control Problems

  41. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ Θ ( t , x ) compact: V n ( t , x ) = R R N h n ( z ) γ n � [ t , T ] , R N , U , dz � Dan Goreac On Some Discontinuous Control Problems

  42. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ Θ ( t , x ) compact: V n ( t , x ) = R R N h n ( z ) γ n � [ t , T ] , R N , U , dz � V n ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup : ; η � ( T � t ) L v φ ( s , y ) + ( h n ( z ) � φ ( T , z )) + φ ( t , x ) . Dan Goreac On Some Discontinuous Control Problems

  43. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ Θ ( t , x ) compact: V n ( t , x ) = R R N h n ( z ) γ n � [ t , T ] , R N , U , dz � V n ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup : ; η � ( T � t ) L v φ ( s , y ) + ( h n ( z ) � φ ( T , z )) + φ ( t , x ) . V n ( t , x ) � η � ( t , x ) � V h ( t , x ) Dan Goreac On Some Discontinuous Control Problems

  44. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ Θ ( t , x ) compact: V n ( t , x ) = R R N h n ( z ) γ n � [ t , T ] , R N , U , dz � V n ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup : ; η � ( T � t ) L v φ ( s , y ) + ( h n ( z ) � φ ( T , z )) + φ ( t , x ) . V n ( t , x ) � η � ( t , x ) � V h ( t , x ) W = sup n V n is the smallest l.s.c. supersolution Dan Goreac On Some Discontinuous Control Problems

  45. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof inf-convolution h n ( x ) = inf y 2 R N ( h ( y ) ^ n + n j y � x j ) , h n ( x ) % h ( x ) , 8 x 2 R N . R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ Θ ( t , x ) compact: V n ( t , x ) = R R N h n ( z ) γ n � [ t , T ] , R N , U , dz � V n ( t , x ) = 8 9 � [ 0 , T ] � R N � η 2 R : 9 φ 2 C 1 , 2 < s.t. = b 8 ( s , y , v , z ) 2 [ t , T ] � R N � V � R N , sup : ; η � ( T � t ) L v φ ( s , y ) + ( h n ( z ) � φ ( T , z )) + φ ( t , x ) . V n ( t , x ) � η � ( t , x ) � V h ( t , x ) W = sup n V n is the smallest l.s.c. supersolution m � n , V m ( t , x ) � R R N h n ( z ) γ m � [ t , T ] , R N , U , dz � ; m ! ∞ , n ! ∞ . Dan Goreac On Some Discontinuous Control Problems

  46. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Upper semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . Dan Goreac On Some Discontinuous Control Problems

  47. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Upper semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . h : R N � ! R is an upper semicontinuous function. Dan Goreac On Some Discontinuous Control Problems

  48. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Upper semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . h : R N � ! R is an upper semicontinuous function. � � j x j 2 + 1 9 c 2 R such that - c � h ( x ) � c , Dan Goreac On Some Discontinuous Control Problems

  49. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Upper semicontinuous case R � [ t , T ] , R N , U , dz � V h ( t , x ) = inf γ 2 Θ ( t , x ) R N h ( z ) γ , ( t , x ) 2 [ 0 , T ) � R N , V h ( T , � ) = h ( � ) . h : R N � ! R is an upper semicontinuous function. � � j x j 2 + 1 9 c 2 R such that - c � h ( x ) � c , Theorem V h is the largest upper semicontinuous viscosity subsolution of (HJB). Dan Goreac On Some Discontinuous Control Problems

  50. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof sup-convolution h n ( x ) = sup y 2 R N ( h ( y ) _ ( � n ) � n j y � x j ) Dan Goreac On Some Discontinuous Control Problems

  51. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof sup-convolution h n ( x ) = sup y 2 R N ( h ( y ) _ ( � n ) � n j y � x j ) � � �� V n ( t , x ) = inf u 2U E X t , x , u , ( t , x ) 2 [ 0 , T ) � R N . h n T Dan Goreac On Some Discontinuous Control Problems

  52. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof sup-convolution h n ( x ) = sup y 2 R N ( h ( y ) _ ( � n ) � n j y � x j ) � � �� V n ( t , x ) = inf u 2U E X t , x , u , ( t , x ) 2 [ 0 , T ) � R N . h n T R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ , Dan Goreac On Some Discontinuous Control Problems

  53. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof sup-convolution h n ( x ) = sup y 2 R N ( h ( y ) _ ( � n ) � n j y � x j ) � � �� V n ( t , x ) = inf u 2U E X t , x , u , ( t , x ) 2 [ 0 , T ) � R N . h n T R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ , W = inf n V n � V h . Dan Goreac On Some Discontinuous Control Problems

  54. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Idea of the proof sup-convolution h n ( x ) = sup y 2 R N ( h ( y ) _ ( � n ) � n j y � x j ) � � �� V n ( t , x ) = inf u 2U E X t , x , u , ( t , x ) 2 [ 0 , T ) � R N . h n T R � [ t , T ] , R N , U , dz � V n ( t , x ) = inf γ 2 Θ ( t , x ) R N h n ( z ) γ , W = inf n V n � V h . γ 2 Θ ( t , x ) , V n ( t , x ) � R � [ t , T ] , R N , U , dz � R N h n ( z ) γ , pass n ! ∞ . Dan Goreac On Some Discontinuous Control Problems

  55. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation What about the dual formulation? 1 � dX t , x = 0 , for 0 � t � s � T = 1 , s , h ( � ) = 1 f 0 g ( � ) . X t , x = x 2 R . t Dan Goreac On Some Discontinuous Control Problems

  56. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation What about the dual formulation? 1 � dX t , x = 0 , for 0 � t � s � T = 1 , s , h ( � ) = 1 f 0 g ( � ) . X t , x = x 2 R . t V h is the largest u.s.c. subsolution of � � ∂ t V h ( t , x ) = 0 , for all ( t , x ) 2 ( 0 , T ) � R , V h ( 1 , � ) = h ( � ) on R . Dan Goreac On Some Discontinuous Control Problems

  57. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation What about the dual formulation? 1 � dX t , x = 0 , for 0 � t � s � T = 1 , s , h ( � ) = 1 f 0 g ( � ) . X t , x = x 2 R . t V h is the largest u.s.c. subsolution of � � ∂ t V h ( t , x ) = 0 , for all ( t , x ) 2 ( 0 , T ) � R , V h ( 1 , � ) = h ( � ) on R . V h ( t , � ) = h ( � ) , for every t 2 ( 0 , T ] Dan Goreac On Some Discontinuous Control Problems

  58. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation What about the dual formulation? 2 � 1 � = 1 . In particular, V h 2 , 0 Dan Goreac On Some Discontinuous Control Problems

  59. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation What about the dual formulation? 2 � 1 � = 1 . In particular, V h 2 , 0 η � � 1 � 2 , 0 8 9 η 2 R : 9 φ 2 C 1 , 2 < ([ 0 , 1 ] � R ) = � 1 � � R 2 , b = sup s.t. 8 ( s , y , z ) 2 2 , 1 � 1 � : ; η � 1 2 ∂ t φ ( s , y ) + h ( z ) � φ ( 1 , z ) + φ 2 , 0 Dan Goreac On Some Discontinuous Control Problems

  60. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation What about the dual formulation? 2 � 1 � = 1 . In particular, V h 2 , 0 η � � 1 � 2 , 0 8 9 η 2 R : 9 φ 2 C 1 , 2 < ([ 0 , 1 ] � R ) = � 1 � � R 2 , b = sup s.t. 8 ( s , y , z ) 2 2 , 1 � 1 � : ; η � 1 2 ∂ t φ ( s , y ) + h ( z ) � φ ( 1 , z ) + φ 2 , 0 z = ε , ε ! 0 to get η � � 1 � � 0 < V h � 1 � 2 , 0 2 , 0 . Dan Goreac On Some Discontinuous Control Problems

  61. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. U.s.c. case � � π = Ω , F , ( F t ) t � 0 , P , W , u , Dan Goreac On Some Discontinuous Control Problems

  62. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. U.s.c. case � � π = Ω , F , ( F t ) t � 0 , P , W , u , U w , Dan Goreac On Some Discontinuous Control Problems

  63. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. U.s.c. case � � π = Ω , F , ( F t ) t � 0 , P , W , u , U w , h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h . T Dan Goreac On Some Discontinuous Control Problems

  64. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. U.s.c. case � � π = Ω , F , ( F t ) t � 0 , P , W , u , U w , h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h . T Proposition If h is u.s.c., then V h ( t , x ) = V w h ( t , x ) , ( t , x ) 2 [ 0 , T ] � R N . Dan Goreac On Some Discontinuous Control Problems

  65. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. U.s.c. case � � π = Ω , F , ( F t ) t � 0 , P , W , u , U w , h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h . T Proposition If h is u.s.c., then V h ( t , x ) = V w h ( t , x ) , ( t , x ) 2 [ 0 , T ] � R N . Idea of the proof : γ t , x , π ( A � B � C � D ) T � t E π h R T i P π � � 1 t 1 A � B � C (( s , X t , x , u X t , x , u = , u s )) ds 2 D s T Dan Goreac On Some Discontinuous Control Problems

  66. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. U.s.c. case � � π = Ω , F , ( F t ) t � 0 , P , W , u , U w , h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h . T Proposition If h is u.s.c., then V h ( t , x ) = V w h ( t , x ) , ( t , x ) 2 [ 0 , T ] � R N . Idea of the proof : γ t , x , π ( A � B � C � D ) T � t E π h R T i P π � � 1 t 1 A � B � C (( s , X t , x , u X t , x , u = , u s )) ds 2 D s T V n ( t , x ) = inf π 2U w E π � � �� � X t , x , u h n inf π 2U w E π � � �� � V h ( t , x ) T X t , x , u h T Dan Goreac On Some Discontinuous Control Problems

  67. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. L.s.c. case h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h T Dan Goreac On Some Discontinuous Control Problems

  68. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. L.s.c. case h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h T f σσ � ( t , x , u ) , b ( t , x , u ) : u 2 U g is convex. Dan Goreac On Some Discontinuous Control Problems

  69. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. L.s.c. case h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h T f σσ � ( t , x , u ) , b ( t , x , u ) : u 2 U g is convex. Proposition If convexity and h is l.s.c., then V h ( t , x ) = V w h ( t , x ) . Dan Goreac On Some Discontinuous Control Problems

  70. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. L.s.c. case h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h T f σσ � ( t , x , u ) , b ( t , x , u ) : u 2 U g is convex. Proposition If convexity and h is l.s.c., then V h ( t , x ) = V w h ( t , x ) . Idea of the proof : use inf-convolution, Dan Goreac On Some Discontinuous Control Problems

  71. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. L.s.c. case h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h T f σσ � ( t , x , u ) , b ( t , x , u ) : u 2 U g is convex. Proposition If convexity and h is l.s.c., then V h ( t , x ) = V w h ( t , x ) . Idea of the proof : use inf-convolution, V n ( t , x ) = inf π 2U w E π � � �� = X t , x , u h n R T X h n ( y T ) R n ( dydq ) , e � R + ; R N � � V , V is the for some control rule R n on e X = C set of positive Radon measures on R + � U whose projection on R + is the Lebesque measure. Dan Goreac On Some Discontinuous Control Problems

  72. Linear formulation in Lipschitz case Deterministic framework Discontinuous setting Stochastic framework Weak control formulation Weak control formulation. L.s.c. case h ( t , x ) = inf π 2U w E π � � �� X t , x , u V w h T f σσ � ( t , x , u ) , b ( t , x , u ) : u 2 U g is convex. Proposition If convexity and h is l.s.c., then V h ( t , x ) = V w h ( t , x ) . Idea of the proof : use inf-convolution, V n ( t , x ) = inf π 2U w E π � � �� = X t , x , u h n R T X h n ( y T ) R n ( dydq ) , e � R + ; R N � � V , V is the for some control rule R n on e X = C set of positive Radon measures on R + � U whose projection on R + is the Lebesque measure. V m ( t , x ) � R X h n ( y T ) R m ( dydq ) if m � n ; e Dan Goreac On Some Discontinuous Control Problems

Recommend


More recommend