So Solution tion of of hi high gher er or orde der r ode ode
Basic Concepts and Theorems The n th order linear ODE takes the form: n n 1 d y d y dy a a ... a a y f x ( ) n n 1 1 0 n n 1 dx dy dx (1) y and all its derivatives are of the first degree a , a ,..., a (2) All the coefficients are function of the n n 1 0 independent variable x only or constants.
Definition: The D operator is defined to be: dy d Dy D dx dx 2 2 d d y 2 2 D D y 2 2 dx dx n n d d y n n D D y n n dx dx Theorem y y , ,..., n y are n independent solutions of the homogenous DE 1 2 y x c y c y ... c y then the general solution is 1 1 2 2 n n
Complementary and particular solutions The complementary (or homogenous) solution: y is the solution of the homogenous case c The particular solution: y is any solution satisfy the non-homogenous case p y The general solution: G y y y G c p
Second Order Linear Homogenous DE with Constant Coefficients e x y y a y a y 0 1 0 e e 2 x x y y a e 2 2 x ( a a ) 0 ( a ) 0 1 0 1 0 This equation called the characteristic equation (c/e) (or auxiliary equation) of the DE.
x x y c e c e 1 2 The solution is: 1 2 5 6 0 y y y 2 5 6 0 2 x 3 x y c e c e 1 2 2 3 0 2, 3 1 2
The solution is: x y e ( c cos x c sin x ) 1 2 y 4 y 13 y 0 2 4 13 0 2 x y e ( c cos3 x c sin3 ) x 1 2 2 3 i 1,2
x x y c e c xe The solution is: 1 2 y 4 y 4 y 0 2 4 4 0 2 x 2 x y c e c xe 1 2 2 2 0 2 1 2
Example y 2 y y 0 Solution 2 2 1 0 x x 2 y c e c xe 1 2 1 0 1 1 2
Example y 4 y 5 y 0 y (0) 1 y (0) 0 Solution 2 4 5 0 y (0) 1 c c 1 1 2 y (0) 0 5 c c 0 5 1 0 1 2 1 5 5, 1 c , c 1 2 1 2 6 6 c e 5 x x 1 5 e y c e 5 x x y e 1 2 6 6
Example y 9 y 0 Solution 2 9 0 3 i 1 2 y c cos3 x c sin3 x 1 2
Higher Orders Homogenous Linear DE with Constant Coefficients n n 1 a y a y ... a y a y 0 n n 1 1 0 1 n n (1) Set the c/e: a a ... a a 0 n n 1 1 0 , ,..., n (2) Find the roots: 1 2 (3) According to the nature of these roots we write the linearly independent solutions.
Example y 2 y 3 y 0 Solution 3 2 0, 1, 3 2 3 0 1 2 3 0 x x 3 x 2 y c e c e c e 2 3 0 1 2 3 3 x x y c c e c e 3 1 0 1 2 3
Example y y 4 y 4 y 0 Solution 2 3 2 1 4 0 4 4 0 2 1, 2 i 1 4 1 0 1 2,3 x y c e c cos2 x c sin2 x 1 2 3
Example 4 2 D 2 D 1 y 0 Solution 4 2 2 1 0 i 1,2 3,4 2 2 ( 1) 0 y ( c cos x c sin ) x x c ( cos x c sin ) x 1 2 3 4
Example 4 2 D 8 D 16 y 0 Solution 4 2 2 2 8 16 0 ( 2) ( 2) 0 2 2 2, 2 ( 4) 0 1,2 3,4 2 x 2 x 2 x 2 x y ( c e c xe ) ( c e c xe ) 1 2 3 4
Recommend
More recommend