Ocean ecosystem conservation and seafood security for future generation : A case study of ecosystem g y y approach to fisheries and the adaptive management of the Shiretoko World Natural Heritage Site g 俵屋宗達作『風神雷神図屏風』 Yasunori SAKURAI & Mitsutaku MAKINO Yasunori SAKURAI & Mitsutaku MAKINO Faculty of Fisheries Sciences, Hokkaido University 1 National Research Institute of Fisheries Science, Fisheries Research Agency
Human activity (Fisheries) Human activity (Fisheries) y ( y ( ) ) C. Peter McRoy Climate change(Global Climate change(Global Climate change(Global Climate change(Global P Professor f University of Alaska warming) warming) warming) warming) Fairbanks, Alaska USA E Ecosystem change Ecosystem change E t t h h How to secure seafood How to secure seafood security for future security for future generation generation ti ti 2 (Photo by Mr. Atsushi Matsuoka)
3
4
野生魚 5
Feeding migration for wintering Feeding migration for wintering Feeding migration for wintering Feeding migration for wintering Northward migration for breeding Northward migration for breeding Northward migration for breeding Northward migration for breeding 【 Cold regime phase, 1970-80s 】 【 Cold regime phase, 1970-80s 】 【 Warm regime phase, after 1990s 】 【 Warm regime phase, after 1990s 】 【 Cold regime phase, 1970-80s 】 【 Cold regime phase, 1970-80s 】 【 Warm regime phase, after 1990s 】 【 Warm regime phase, after 1990s 】 80’s 80’s 80’s 90’s 90’s 90’s (Indiv ) (Indiv ) (Indiv ) (Indiv.) (Indiv.) (Indiv.) (Individual) (Individual) (Individual) (個体数) (個体数) Sea of Okhotsk Sea of Okhotsk Sea of Okhotsk 20000 20000 20000 1000 1000 1000 1000 1000 ♂ ♂ Pacific Pacific Pacific 900 900 900 900 900 ♀ ♀ 16000 16000 16000 Sea of Japan Sea of Japan Sea of Japan 800 800 pup pup 800 800 800 700 700 700 700 700 12000 12000 12000 600 600 600 600 600 500 500 500 500 500 500 500 500 500 500 8000 8000 8000 400 400 400 400 400 300 300 300 300 300 4000 4000 4000 200 200 200 200 200 100 100 100 100 100 0 0 0 0 0 90 92 94 96 98 00 02 04 90 92 94 96 98 00 02 04 (年) (年) (年) 0 0 0 89 89 90 90 91 91 92 92 93 93 94 94 95 95 96 96 97 97 98 98 99 99 00 00 01 01 02 02 03 03 04 04 05 05 ( 年 ) ( 年 ) ( 年 ) ( 年 ) ( 年 ) ( 年 ) 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 (年) (年) (年) (年) 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 Number of SSL at the Tyuleny Isd. Accumlative sighting number of SSL (Kuzin, 2006) (Data from Hokkaido) 6
th Century Global warming during 20 th Global warming during 20 Century 7 http://www.cru.uea.ac.uk/cru/info/warming/
Warming trend in SST observed around Japan M. Nakamura JMA (2007) ( ) Global mean: 0.50 ( ° C/100yr ) ( y ) ) ) SST warming trend ( ° C/100yr) SST warming trend ( C/100yr) observed from 1900 to 2006. 8
IPCC WG1 AR4 highlights IPCC WG1 AR4 highlights 0.2 ° C per decade is projected for a range of SRES � For the next two decades, a warming of about For the next two decades, a warming of about 0.2 C per decade is projected for a range of SRES emission scenarios. emission scenarios. � Even if the concentrations of Even if the concentrations of all greenhouse gases and aerosols had been kept all greenhouse gases and aerosols had been kept constant at year 2000 constant at year 2000 about 0 1 ° C per decade would be expected levels a further warming of levels a further warming of about 0 1 levels, a further warming of levels, a further warming of about 0.1 about 0.1 C per decade would be expected. C per decade would be expected. C per decade would be expected � Continued Continued GHG GHG emissions at or above emissions at or above current rates would cause further warming and current rates would cause further warming and induce many induce many st century that would very likely be during the 21 st changes in the global climate system during the 21 changes in the global climate system century that would very likely be larger than those larger than those 9 th century. observed during the 20 th observed during the 20 century.
? Northward Expansion of Atlantic cod Drinkwater(2008) 10
2099 2099 2005 2005 stable stable stable stable stable stable stable stable stable stable stable stable ? ? decrease decrease decrease decrease decrease decrease extinct extinct extinct extinct extinct extinct 2050 2050 stable stable stable ? ? ? ? decrease decrease decrease extinct extinct extinct Walleye pollock 11
(after Pauly and Maclean, 2003) 12
Spawning grounds China nd T) Chile USSR 100 thousan Mexico Peru Korea Catch(1 Japan Ripe females of Jumbo squid, Catch trends of Jumbo squid Dosidicus gigas Fisheries Agency & Fishries Agency of Japan (2006) 13
Oceanic squid is a key species in bottom-up, top- down, and ‘wasp-waist’ controlled marine ecosystem , p y 14 Griffiths et al.,(2006)
Regime Shift g Siberian Siberian Siberian Siberian High High g High High g Aleutian Aleutian Aleutian Aleutian Aleutian Aleutian Aleutian Aleutian Low Low Low Low ● Irkutsk ● Irkutsk Irkutsk Irkutsk ● Nemuro Nemuro 2 勢力弱 k weak weak 勢力弱 勢力弱 勢力弱 1 0 -1 5Yrs mean 5Yrs mean -2 strong strong strong strong 勢力強 勢力強 raw raw 1965 1970 1975 1980 1985 1990 1995 2000 Annual change of Aleutian low pressure index Annual change of Aleutian low pressure index Annual change of Aleutian low pressure index. Annual change of Aleutian low pressure index. 図4.アリューシャン低気圧 図4.アリューシャン低気圧 (Nakamura and Honda, 2002) (Nakamura and Honda, 2002) 15
Wintertime climate and winter-spring production: 1976/77RS 1985 Wintertime climate and winter-spring production: 1988/89RS (modified from Chavez et al 2003. * information of the western North Pacific added by Chiba ) 1990 1990 (Fig by Chiba based on various sources) 16
Jack mackerel Jack mackerel Japanese Japanese sardine sardine 6 6 6 6 Japanese anchovy Japanese anchovy 60 60 60 60 60 erel erel erel Jack mackerel Jack mackerel Jack macke Jack macke Jack macke e, Mackerel e, Mackerel e, Mackerel 5 5 5 5 50 50 50 50 50 Sardine Sardine Sardine ch (10 5 t) ch (10 5 t) ch (10 5 t) 4 4 4 4 40 40 40 40 40 Anchovy Anchovy Anchovy Common squid Common squid Mackerels Mackerels 3 3 3 3 30 30 30 30 30 Anchovy Anchovy Anchovy Anchovy Catc Catc Catc Anchovy, Anchovy, Anchovy, Sardin Sardin Sardin 2 2 2 2 20 20 20 20 20 Mackerel Mackerel 1 1 1 1 10 10 10 10 10 0 0 0 0 0 0 0 0 0 Catch fluctuations of main pelagic species for fisheries Catch fluctuations of main pelagic species for fisheries Catch fluctuations of main pelagic species for fisheries Catch fluctuations of main pelagic species for fisheries 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1920 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1960 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 1980 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 in Japan in Japan 谷津 (2003) 谷津 (2003) Sardine Sardine Year Year Year Year Year Year 3.0 3.0 3.0 3.0 3.0 3.0 Japanese ndex ndex ndex common squid n) n) n) 2.5 2 5 2 5 2.5 2.5 2.5 2 5 2 5 2 5 2.5 2 5 2.5 unning mean unning mean unning mean mperature in mperature in mperature in Sardine Sardine S Sardine S S di di di (Sakurai et al., Mackerel Mackerel 2008) 2.0 2.0 2.0 2.0 2.0 2.0 Mackerel Mackerel Jack mackerel 1.5 1.5 1.5 1.5 1.5 1.5 Anchovy Anchovy Anchovy y y y pawning tem pawning tem pawning tem (11-term ru (11-term ru (11-term ru 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 Jack mackerel Jack mackerel S S S 0.0 0.0 0.0 0.0 0.0 0.0 5 5 5 5 5 5 10 10 10 10 10 10 15 15 15 15 15 15 20 20 20 20 20 20 25 25 25 25 25 25 30 30 30 30 30 30 Sea surface temperature (°C) Sea surface temperature (°C) Sea surface temperature (°C) Sea surface temperature (°C) Similarities and differences in spawning temperature patterns represent those in the long-term population dynamics patterns. ( After Takasuka, 2006) 18
Recommend
More recommend