observatjons gravitatjonnelles et incertjtudes dans la
play

Observatjons gravitatjonnelles et incertjtudes dans la mesure de - PowerPoint PPT Presentation

Observatjons gravitatjonnelles et incertjtudes dans la mesure de distance Eric Chassande-Mottjn CNRS/IN2P3 AstroPartjcule et Cosmologie in collaboratjon with Konstantjn Leyde, Simone Mastrogiovanni, Danile Steer Bas sur arXiv:1906.02670


  1. Observatjons gravitatjonnelles et incertjtudes dans la mesure de distance Eric Chassande-Mottjn CNRS/IN2P3 AstroPartjcule et Cosmologie in collaboratjon with Konstantjn Leyde, Simone Mastrogiovanni, Danièle Steer Basé sur arXiv:1906.02670 – accepté dans Phys Rev D

  2. Context: measurement of the Hubble constant ● Gravitatjonal-wave “standard sirens” Luminosity distance Redshif from electromagnetjc from GW observatjons observatjon (e.g., host galaxy) So far, only 1 point Infer Hubble constant in the z, D L plane (GW170817)! Error propagatjon : 10 oct 2019 Assemblée Générale GdR OG 2

  3. Initjal intuitjons ● Uncertainty largely due to distance/inclinatjon degeneracy ● Two polarizatjons may help to resolve this degeneracy Ex: GW170817 with signifjcant SNR in both LIGO HL and Virgo ● Sky locatjons where distance uncertainty is smaller? “Golden spots” for H0 measurement? Abbotu et al. Phys. Rev. X 9, 011001 2019 10 oct 2019 Assemblée Générale GdR OG 3

  4. Uncertainty estjmate ● Fisher informatjon matrix → Gaussian approx ● Require “beyond Gaussian” approx that – Encodes the degeneracies – Is analytjc (fast evaluatjon) Seminal paper: Cutler & Flanagan – 1994 Log likelihood: Gaussian approx is an oversimplifj fjcatj tjon Newtonian waveform (masses, merger tjme, sky positj tjon known) Free parameters: D L , inclinatjon, polarizatjon angle, merger phase 10 oct 2019 Assemblée Générale GdR OG 4

  5. Cutler & Flanagan – 1994 A, B = + or x distance beam phase at merger polar angle inclinatjon patuern GW strain at detector: Efgectjve polarizatjon amplitudes: Rewrite scalar product: using efgectjve polarizatjons noise spectrum Mixing matrix of the scalar product: Diagonalize: 10 oct 2019 Assemblée Générale GdR OG 5 Note: error in CF94 afuer marginalizatjon

  6. Degeneracy parameter ε d Two unknowns Two unknowns – two equatjons one equatjon Increase the number of detectors, decreases the number of degenerate cases 10 oct 2019 Assemblée Générale GdR OG 6

  7. Efgect of degeneracy Non-degenerate ε d = 0 Degenerate ε d = 1 Posterior is Posterior is data driven prior driven D L D L 10 oct 2019 Assemblée Générale GdR OG 7

  8. Uncertaintjes in the non-degenerate case SNR = 20 no golden spots Our predicted uncertaintjes for D L or inclinatjon ί are consistent with: Simulated binary neutron-star signals estjmated using LAL Inf (nested sampling) ● Similar results in the literature obtained through simulatjons ● 10 oct 2019 Assemblée Générale GdR OG 8

  9. Applicatjon to GW170817 Computed using LAL Inf posteriors Based on analytjcal approx [CF’94] ε d = 0.8 SNR = 33 10 oct 2019 Assemblée Générale GdR OG 9

  10. Concluding remarks ● Analytjcal predictjon for the distance uncertaintjes – Able to capture the distance/inclinatjon degeneracy – Consistent results with Bayesian estjmates – Can be used for future projectjons of H0 measurements (200 BNS+) ● Positjon-dependent predictjons applied to the full sky – No “golden” spots – Evidences the existence of degenerate sky locatjons – ε d = 1 Risk of bias due to prior-driven posteriors when 10 oct 2019 Assemblée Générale GdR OG 10

  11. 10 oct 2019 Assemblée Générale GdR OG 11

  12. 10 oct 2019 Assemblée Générale GdR OG 12

  13. Cutler & Flanagan – 1994 Factor between our uncertainty predictjon on distance and that of CF94 (difgerence due to a mistake in the calculatjon that we have corrected) 10 oct 2019 Assemblée Générale GdR OG 13

Recommend


More recommend