objec bject t detec detecti tion on
play

Objec bject t detec detecti tion on CV3DST | Prof. Leal-Taix 1 - PowerPoint PPT Presentation

Objec bject t detec detecti tion on CV3DST | Prof. Leal-Taix 1 Ta Task k defini niti tion Object detection problem Bounding box. (x,y,w,h) h (x,y) w CV3DST | Prof. Leal-Taix 2 Ta Task k defini niti tion Object


  1. Objec bject t detec detecti tion on CV3DST | Prof. Leal-Taixé 1

  2. Ta Task k defini niti tion • Object detection problem Bounding box. (x,y,w,h) h (x,y) w CV3DST | Prof. Leal-Taixé 2

  3. Ta Task k defini niti tion • Object detection problem Bounding box. (x,y,w,h) + class CV3DST | Prof. Leal-Taixé 3

  4. A A bit it of f his history CV3DST | Prof. Leal-Taixé 4

  5. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • 1. Template matching + sliding window Template Image CV3DST | Prof. Leal-Taixé 5

  6. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • 1. Template matching + sliding window Image CV3DST | Prof. Leal-Taixé 6

  7. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • 1. Template matching + sliding window For every position you evaluate how much do the pixels in the image and template correlate LOW correlation Image CV3DST | Prof. Leal-Taixé 7

  8. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • 1. Template matching + sliding window For every position you evaluate how much do the pixels in the image and template correlate Image HIGH correlation CV3DST | Prof. Leal-Taixé 8

  9. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • Problems of 1. Template matching + sliding window For every position you evaluate how much do the pixels in the image and template correlate Image LOW correlation CV3DST | Prof. Leal-Taixé 9

  10. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • Problems of 1. Template matching + sliding window – Occlusions: we need to see the WHOLE object – This works to detect a given in instance of an object but not ass of objects a cl clas Appearance and shape changes Pose changes CV3DST | Prof. Leal-Taixé 10

  11. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • Problems of 1. Template matching + sliding window – Occlusions: we need to see the WHOLE object – This works to detect a given in instance of an object but not ass of objects a cl clas – Objects have an unknown position, scale and aspect ratio, the search space is searched inefficiently with sliding window CV3DST | Prof. Leal-Taixé 11

  12. Tr Traditi tiona nal l object ct dete tecti ction n metho thods • 2. Feature extraction + classification CV3DST | Prof. Leal-Taixé 12

  13. Vi Viol ola-Jon ones es det detec ector or • 2. Feature extraction + classification – Learning multiple weak learners to build a strong classifier – That is, make many small decisions and combine them for a stronger final decision Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. CV3DST | Prof. Leal-Taixé 13

  14. Vi Viol ola-Jon ones es det detec ector or • 2. Feature extraction + classification Haar features Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. CV3DST | Prof. Leal-Taixé 14

  15. Vi Viol ola-Jon ones es det detec ector or • 2. Feature extraction + classification – Step 1: Select your Haar-like features – Step 2: Integral image for fast feature evaluation • I can evaluate which parts of the image have highest cross- correlation with my feature (template) – Step 3: AdaBoost for to find weak learner • I cannot possibly evaluate all features at test time for all image locations • Learn the best set of weak learners • Our final classifier is the linear combination of all weak learners Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. CV3DST | Prof. Leal-Taixé 15

  16. Vi Viol ola-Jon ones es det detec ector or Viola and Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. CV3DST | Prof. Leal-Taixé 16

  17. Hist Histogram o m of O Orie iented G Gradie ients • 2. Feature extraction + classification Gradient: blue arrows show the gradient, i.e., the direction of greatest change of the image. Average gradient image over training samples à gradients provide shape information. Let us create a descriptor that exploits that. Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005. CV3DST | Prof. Leal-Taixé 17

  18. Hist Histogram o m of O Orie iented G Gradie ients • 2. Feature extraction + classification HOG descriptor à Histogram of oriented gradients. Compute gradients in dense grids, compute gradients and create a histogram based on gradient direction. Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005. CV3DST | Prof. Leal-Taixé 18

  19. Hist Histogram o m of O Orie iented G Gradie ients • 2. Feature extraction + classification – Step 1: Choose your training set of images that contain the object you want to detect. – Step 2: Choose a set of images that do NOT contain that object. – Step 3: Extract HOG features on both sets. – Step 4: Train an SVM classifier on the two sets to detect whether a feature vector represents the object of interest or not (0/1 classification). Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005. CV3DST | Prof. Leal-Taixé 19

  20. Hist Histogram o m of O Orie iented G Gradie ients • 2. Feature extraction + classification HOG features weighted by the positive SVM weights – the ones used for the pedestrian object classifier. Dalal and Triggs. Histogram of oriented gradients for human detection. CVPR 2005. CV3DST | Prof. Leal-Taixé 20

  21. De Deformable ble Pa Part t Model • Also based on HOG features, but based on body part detection à more robust to different body poses Felzenszwalb et al. A discriminatively trained, multiscale, deformable part model. CVPR 2008. CV3DST | Prof. Leal-Taixé 21

  22. Ho How t to m move towards general l object object detecti detection on? CV3DST | Prof. Leal-Taixé 22

  23. What Wh at def defines es an an ob objec ject? nostic objectness • We need a generic, clas ass-ag agno measure: how likely it is for an image region to contain an object Very likely to be an object Maybe it is an object CV3DST | Prof. Leal-Taixé 23

  24. Wh What at def defines es an an ob objec ject? nostic objectness • We need a generic, clas ass-ag agno measure: how likely it is for an image region to contain an object • Using this measure yields a number of candidate RoI) where to object proposal als or regions ns of int nterest (Ro focus. + classifier CV3DST | Prof. Leal-Taixé 24

  25. Obj Object ct pro propo posal l methods • Selective sear arch : van de Sande et al. Segmentation as selective search for object recognition. ICCV 2011. • Ed Edge boxes : Zitnick and Dollar. Edge boxes: locating object proposals from edges. ECCV 2014. CV3DST | Prof. Leal-Taixé 25

  26. Do Do we want t all ll pr propo posals ls? • Many boxes trying to explain one object • We need a method to keep only the “best” boxes CV3DST | Prof. Leal-Taixé 26

  27. No Non-Max Maximum Suppres ession on (N (NMS MS) • Many boxes trying to explain one object • We need a method to keep only the “best” boxes CV3DST | Prof. Leal-Taixé 27

  28. No Non-Max Maximum Suppres ession on (N (NMS MS) Start with anchor box i For another box j If they overlap Discard box i if the score is lower than the score of j Overlap = to be defined Score = depends on the task CV3DST | Prof. Leal-Taixé 28

  29. Region Reg on ov over erlap ap • We measure region overlap with the Int ntersection n IoU) or Jac over Uni nion n (Io Jaccar ard Ind ndex : J ( A, B ) = | A ∩ B | | A ∪ B | B B B A A A Intersection Union CV3DST | Prof. Leal-Taixé 29

  30. No Non-Max Maximum Suppres ession on (N (NMS MS) Start with anchor box i For another box j If they overlap Discard box i if the score is lower than the score of j Overlap = to be defined Score = depends on the task CV3DST | Prof. Leal-Taixé 30

  31. NM NMS: t the pro probl blem Ground truth positions Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015 CV3DST | Prof. Leal-Taixé 31

  32. NM NMS: t the pro probl blem • Choosing a narrow threshold Ground truth positions False positives Low Precision Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015 CV3DST | Prof. Leal-Taixé 32

  33. NM NMS: t the pro probl blem • Choosing a wider threshold Ground truth position False negative False positive Low Recall Hosang, Benenson and Schiele. A Convnet for Non-Maximum Suppression. 2015 CV3DST | Prof. Leal-Taixé 33

  34. No Non-Max Maximum Suppres ession on (N (NMS MS) • NMS will be used at test time. Most detection methods (even Deep Learning ones) use NMS! CV3DST | Prof. Leal-Taixé 34

  35. Le Lear arning ning-ba based sed detec detectors tors CV3DST | Prof. Leal-Taixé 38

  36. Ty Types of object ct dete tecto ctors • One-stage detectors Class score (cat, Classification dog, person) Feature Image extraction Bounding box Localization (x,y,w,h) • Two-stage detectors Class score (cat, Classification Extraction of dog, person) Feature Image object extraction Refine bounding box proposals Localization ( Δ x, Δ y, Δ w, Δ h) CV3DST | Prof. Leal-Taixé 39

Recommend


More recommend