non equilibrium phenomena in spinor bose gases dan s
play

Non-equilibrium phenomena in spinor Bose gases Dan S tamper-Kurn - PowerPoint PPT Presentation

Non-equilibrium phenomena in spinor Bose gases Dan S tamper-Kurn University of California, Berkeley outline Introductory material Interactions under rotational symmetry Energy scales Ground states S pin dynamics microscopic spin mixing


  1. Non-equilibrium phenomena in spinor Bose gases Dan S tamper-Kurn University of California, Berkeley

  2. outline Introductory material Interactions under rotational symmetry Energy scales Ground states S pin dynamics microscopic spin mixing oscillations single-mode mean-field dynamics spin mixing instability More?

  3. Breit-Rabi diagram 1 1 1 𝐼 β„Žπ‘” = 𝑏𝑏 ℏ 2 𝐽 β‹… 𝐾 βˆ’ 𝜈 β‹… 𝐢 𝜈 = βˆ’π‘• 𝐾 𝜈 𝐢 ℏ 𝐾 + 𝑕 𝐽 𝜈 π‘œ ℏ 𝐽 𝑕 𝐺 ≃ 2 𝐺 𝐺 + 1 + 𝐾 𝐾 + 1 βˆ’ 𝐽 ( 𝐽 + 1) Β±1 = 𝐽 + 1/2 2𝐺 ( 𝐺 + 1)

  4. outline Introductory material Interactions under rotational symmetry Energy scales Ground states S pin dynamics microscopic spin mixing oscillations single-mode mean-field dynamics spin mixing instability More?

  5. Interactions + rotational symmetry | 𝜚 𝐡 βŒͺ ⃑ | 𝜚 𝑫 βŒͺ 𝑇 central potential, translation invariant 𝑛 𝑛 β€² 𝑙 π‘—π‘œ , 𝑍 𝑙 𝑝𝑝𝑝 , 𝑍 π‘š π‘š β€² | 𝜚 π‘ͺ βŒͺ | 𝜚 𝑬 βŒͺ ⃑ ? How complicated is the scattering matrix 𝑇 Make some approximations:

  6. Interactions + rotational symmetry typical molecular potential: short range long range complex (molecular) magnetic dipole (1/r^3) lots of particles interacting (d-wave) range of potential 𝑠 0 distance 0 between nuclei 1. Low incident energy only s-wave collisions occur (quantum collision regime), determined by short-range potential long-range treated separately (depending on dimension) still quite open problem

  7. Interactions + rotational symmetry 2. S pinor gas approximation: interactions are rotationally symmetric TOTAL angular momentum in = out Note: imperfect approximation in case of… β€’ applied B field (e.g. Feshbach resonance) β€’ non spherical container 3. Weak dipolar approximation: Assume that dipolar interactions due to short-range potential are weak no β€œ spin-orbit” coupling orbital angular momentum is separately conserved 𝐺 𝑝𝑝𝑝 𝑗𝑗 = 𝐺 𝑝𝑝𝑝 ( 𝑝𝑝𝑝 ) 4. Weak hyperfine relaxation collisions keep atoms in the same hyperfine spin manifold

  8. Interactions + rotational symmetry After all these approximations: π‘Š short range = 4 πœŒβ„ 2 πœ€ 3 𝑠 οΏ½ 0 + 𝑏 1 𝑄 οΏ½ 1 + 𝑏 2 𝑄 οΏ½ 2 + β‹― βƒ— 𝑏 0 𝑄 𝑛 Bose-Einstein statistics: all terms with Ftot odd are zero putting into more familiar form… (see blackboard)

  9. outline Introductory material Interactions under rotational symmetry Energy scales Ground states S pin dynamics microscopic spin mixing oscillations single-mode mean-field dynamics spin mixing instability More?

  10. Energy scales in a spinor Bose-Einstein condensate spin-dependent contact interactions βƒ— 2 𝐹 = βˆ’ 𝑑 2 𝑗 𝐺 β‰ˆ 10 Hz, or 0.5 nK thermal energy 𝐹 = 𝑙 𝐢 π‘ˆ β‰ˆ 1000 Hz, or 50 nK linear Zeeman shift at typical magnetic fields 𝐹 = 𝑕 𝐺 𝜈 𝐢 𝐢 β‰ˆ 100,000 Hz, or 5000 nK

  11. Bose-Einstein magnetism magnetization of a non-interacting, spin-1 Bose gas in a magnetic field: Bose-Einstein condensation occurs at lower temperature at lower field (opening up spin states adds entropy) Magnetization j ump at zero- field below Bose-Einstein condensation transition Yamada, β€œThermal Properties of the System of Magnetic Bosons,” Prog. Theo. Phys. 67, 443 (1982) Expt. with chromium: Pasquiou, Laburthe-Tolra et al., PRL 106 , 255303 (2011). magnetic ordering is β€œparasitic”

  12. linear and quadratic Zeeman shifts = m 1 z = m 0 z = βˆ’ m 1 z However, dipolar relaxation is extremely rare (for alkali atoms) β†’ linear Zeeman shift is irrelevant!

  13. linear and quadratic Zeeman shifts 2 q F = z m 1 z = m 0 z 2 = βˆ’ q F m 1 z z However, dipolar relaxation is extremely rare (for alkali atoms) β†’ linear Zeeman shift is irrelevant! spin-mixing collisions are allowed π‘Ÿ = quadratic Zeeman shift

  14. outline Introductory material Interactions under rotational symmetry Energy scales Ground states S pin dynamics microscopic spin mixing oscillations single-mode mean-field dynamics spin mixing instability More?

  15. F=1 mean-field phase diagram S tenger et al., Nature 396 , 345 (1998)

  16. Evidence for antiferromagnetic interactions of F=1 Na Stenger et al., Nature 396 , 345 (1998) Miesner et al., PRL 82 , 2228 (1999).

  17. F=1 mean-field phase diagram S tenger et al., Nature 396 , 345 (1998)

  18. Evidence for antiferromagnetic interactions of F=1 Na Bookjans, E.M., A. Vinit, and C. Raman, Quantum Phase Transition in an Antiferromagnetic Spinor Bose-Einstein Condensate. Physical Review Letters 107, 195306 (2011).

  19. m = +1, -1, 0 m = 0 m = +1 m = 0 B B final m = -1 time Chang, M.-S., et al., Observation of spinor dynamics in optically trapped Rb Bose- Einstein condensates. PRL 92, 140403 (2004)

  20. F β€² = 2 Dispersive birefringent imaging 1 1 1 12 2 2 F = 1 phase-contrast imaging polarization-contrast imaging phase plate polarizer z y x 𝜏 + linear

  21. S pin echo imaging fine tuning: Ο€ Ο€ Ο€ /2 Ο€ pulses: time M x M y M z images: N β‰₯ 2 x 10 6 vector imaging sequence repeat? atoms T β‰₯ 50 nK 300;300;200 Β΅ m ~3 Β΅ m 15;30;60 Β΅ m geometry β‰ˆ surfboard

  22. Development of spin texture q/ h = 0 Transverse Longitudinal previous 50 Β΅m experiment Time: 300 500 700 1100 1500 2000 ms

  23. Development of spin texture q/ h = + 5 Hz Transverse Longitudinal previous 50 Β΅m experiment Time: 300 500 700 1100 1500 2000 ms

  24. Development of spin texture q/ h = - 5 Hz Transverse Longitudinal previous 50 Β΅m experiment Time: 300 500 700 1100 1500 2000 ms

  25. Growth of transverse/longitudinal magnetization Var(M) = real space zero-range spatial correlation function Transverse Longitudinal

  26. Easy axis/plane magnetic order: in-situ vs tof Transverse Var(M) Longitudinal Black: mean field, q/h (Hz) s-wave m= Β± 1 fraction Green: start with 1/3 Blue: start with 1/4 Yellow: start with 0

  27. outline Introductory material Interactions under rotational symmetry Energy scales Ground states S pin dynamics microscopic spin mixing oscillations single-mode mean-field dynamics spin mixing instability More?

  28. spin mixing of many atom pairs Widera et al., PRL 95 , 190405 (2005)

  29. M. S . Chang et al, Nature Physics 1 , 111 (2005)

  30. F=1 mean-field phase diagram S tenger et al., Nature 396 , 345 (1998)

  31. Liu, Y., S. Jung, S.E. Maxwell, L.D. Turner, E. Tiesinga, and P.D. Lett, Quantum Phase Transitions and Continuous Observation of Spinor Dynamics in an Antiferromagnetic Condensate. PRL 102 , 125301 (2009.

  32. Hannover experiments: single-mode quench Instability to non- uniform mode (less likely to contain technical noise) Instability to nearly uniform mode (more likely to contain technical noise) π‘Ÿ stable m = -1 m = 0 m = +1

  33. Hannover experiments: single-mode quench PRL 103 , 195302 (2009) PRL 104 , 195303 (2010) PRL 105 , 135302 (2010)

  34. Quant um spin-nemat icit y squeezing (Chapman group, Georgia Tech) 15 ms 30 ms 45 ms 65ms observed squeezing 8.6 dB below standard quantum limit! Hamley et al., Nature Physics 8 , 305 (2012). see also Gross et al., Nature 480, 219 (2011) [Oberthaler group], and LΓΌcke, et al., S cience 334, 773 (2011) [Klempt group]

  35. Spectrum of stable and unstable modes Bogoliubov spectrum m = Gapless phonon (m= 0 phase/density excitation) 0 z Spin excitations Energies = + + βˆ’ 2 2 2 E ( k q k )( q 2) scaled by c 2 n S q q βˆ’ spin excitations are gapped by ( 2) q> 2: broad, β€œwhite” instability 1> q> 2: broad, β€œcolored” instability 0> q> 1: sharp instability at specific qβ‰ 0 q< 0:

  36. Tuning the amplifier T = 170 ms 400 Β΅ m 40 Β΅ m Quench end q / h = -2 0 2 5 10 Hz point:

  37. J. Phys A: Math. Gen. 9, 1397 (1976) Big bang Time, temperature β€’ What defects can form? 𝜚 = 0 , no broken symmetry β€’ How many? Stability? β€’ β€’ Size? Mass? 𝜚 β‰  0 , broken symmetry β€’ Coarsening

  38. Translates ideas to non-equilibrium condensed- matter systems β€’ Condensed-matter (and atomic, optical, etc) systems are test-beds for cosmolgy theory β€’ Family of generic phenomena in materials Nature 317, 505 (1985) Hot experiment thermodynamic β€’ What defects can form? 𝜚 = 0 , no broken symmetry Time, any β€’ How many? variable Stability? β€’ β€’ Size? Mass? 𝜚 β‰  0 , broken symmetry β€’ Coarsening

  39. Topological defect formation across a symmetry- breaking phase transition Kibble (1976), Zurek (1985) 1) Size of thermal fluctuation 𝜚 = 2𝜌 Set by correlation + 3 dynamical critical exponents and sweep rate\ 𝜚 = 0 𝜚 = 4 𝜌 3 𝜚 = 0 𝜚 = 2𝜌 3 2) Discordant regions heal into various defects (homotopy group) 3) Defects evolve, interact, persist or annihilate each other, etc.

  40. β€œ Thermal” Kibble-Zurek mechanism: first experiments Liquid crystals: quench of nematic order parameter Mostly confirm predictions 2) and 3) Chuang et al, Science 251, 1336 (1991) Bowich et al, Science 263, 943 (1994)

Recommend


More recommend