noisy differential equations with power type coefficients
play

Noisy differential equations with power type coefficients Samy - PowerPoint PPT Presentation

Noisy differential equations with power type coefficients Samy Tindel Universit de Lorraine AMS Sectional Meeting - Las Vegas 2015 Ongoing joint work with Jorge Len and David Nualart Samy T. (Nancy) Power type coefficients Las Vegas 2015


  1. Noisy differential equations with power type coefficients Samy Tindel Université de Lorraine AMS Sectional Meeting - Las Vegas 2015 Ongoing joint work with Jorge León and David Nualart Samy T. (Nancy) Power type coefficients Las Vegas 2015 1 / 22

  2. Outline Introduction 1 Equation under consideration Examples and heuristics Results 2 Samy T. (Nancy) Power type coefficients Las Vegas 2015 2 / 22

  3. Outline Introduction 1 Equation under consideration Examples and heuristics Results 2 Samy T. (Nancy) Power type coefficients Las Vegas 2015 3 / 22

  4. Outline Introduction 1 Equation under consideration Examples and heuristics Results 2 Samy T. (Nancy) Power type coefficients Las Vegas 2015 4 / 22

  5. Typical noisy differential equation Equation: � t d � 0 σ j ( y u ) dx j y t = a + u . (1) j =1 Assumptions: x ∈ C γ ([0 , τ ]; R d ), with γ > 1 / 2 a initial data in R m σ 1 , . . . , σ d vector fields on R m 1 γ then Classical result: If σ ∈ C ֒ → Existence and uniqueness result for (1) Samy T. (Nancy) Power type coefficients Las Vegas 2015 5 / 22

  6. Equation with power type coefficient Equation: for x ∈ C γ ([0 , τ ]; R d ), � t d � 0 σ j ( y u ) dx j y t = a + u . (2) j =1 Further assumptions on σ : For κ ∈ (0 , 1) σ (0) = 0, σ smooth away from 0 | σ ( ξ 2 ) − σ ( ξ 1 ) | � | ξ 2 − ξ 1 | κ in a neighborhood of 0. Case 1: γ + γκ > 1 ֒ → Easily handled by Young integration techniques. Case 2: γ + γκ < 1 ֒ → Case of interest for us. Samy T. (Nancy) Power type coefficients Las Vegas 2015 6 / 22

  7. Outline Introduction 1 Equation under consideration Examples and heuristics Results 2 Samy T. (Nancy) Power type coefficients Las Vegas 2015 7 / 22

  8. Brownian case Feller’s diffusion: Historical process defined as Solution to dX t = β X t dt + σ √ X t ˙ W t , where W ≡ Wiener. Obtained as limit of Galton-Watson processes. 12 8 6 4 2 0 0 1 2 3 4 5 Figure: Simulation for dX t = . 02 X t dt + 2 √ X t dW t on [0 , 5] Samy T. (Nancy) Power type coefficients Las Vegas 2015 8 / 22

  9. Brownian case (2) Related question: Pathwise existence and uniqueness for dY t = | Y t | κ ˙ W t , κ ∈ (0 , 1) . Yamada-Watanabe’s results: If κ ≥ 1 / 2, existence and pathwise uniqueness. If κ < 1 / 2, pathwise uniqueness fails. Samy T. (Nancy) Power type coefficients Las Vegas 2015 9 / 22

  10. Brownian case (3) Heuristics for critical exponent: Reduction to the definition of | Y t | κ ˙ W t as a distribution 1 ˙ W t ∈ C − 1 / 2 − ε 2 Problem to define | Y t | κ ˙ W t : when Y t close to 0 3 ֒ → otherwise power function well-behaved When Y t close to 0: equation becomes noiseless 4 (i) Morally Y ∈ C 1 (ii) Morally | Y | κ ∈ C κ instead of | Y | κ ∈ C κ 2 (iii) Product | Y t | κ ˙ W t well-defined if κ − 1 2 − ε > 0 Conclusion: Critical κ is 1 2 Remark: Heuristic not apparent in Yamada-Watanabe’s proof. Samy T. (Nancy) Power type coefficients Las Vegas 2015 10 / 22

  11. Stochastic PDE case Dawson-Watanabe process: Defined as � X t ( x ) ˙ Solution to ∂ t X t ( x ) = 1 2 ∆ X t ( x ) + W t ( x ) where ˙ W ≡ space-time white noise on R + × R . Obtained as limit of branching Brownian particles. Figure: A simulation by Nicolas Champagnat Samy T. (Nancy) Power type coefficients Las Vegas 2015 11 / 22

  12. Stochastic PDE case (2) Related question: Pathwise existence and uniqueness for ∂ t Y t ( x ) = 1 2∆ Y t ( x ) + | Y t ( x ) | κ ˙ W t , κ ∈ (0 , 1) . Mytnik-Mueller-Perkins’ results: If κ > 3 / 4, existence and pathwise uniqueness. If κ < 3 / 4, pathwise uniqueness fails. Criticality of 3 / 4 can be seen from heuristics Mytnik-Perkin’s proof is a (terrible) elaboration of heuristics. Samy T. (Nancy) Power type coefficients Las Vegas 2015 12 / 22

  13. Stochastic PDE case (3) Heuristics for critical exponent: Reduction to the definition of | Y t ( x ) | κ ˙ W t ( x ) as a distribution 1 W ∈ C − 3 / 2 − ε in parabolic scaling ˙ 2 Problem to define | Y t ( x ) | κ ˙ W t ( x ): when Y t ( x ) close to 0 3 ֒ → otherwise power function well-behaved When Y t ( x ) close to 0: equation becomes noiseless 4 (i) Morally Y ∈ C 2 in parabolic scaling (ii) Morally | Y | κ ∈ C 2 κ instead of | Y | κ ∈ C κ 2 in parabolic scaling (iii) Product | Y t | κ ˙ W t well-defined if 2 κ − 3 2 − ε > 0 Conclusion: Critical κ is 3 4 Samy T. (Nancy) Power type coefficients Las Vegas 2015 13 / 22

  14. Stochastic PDE case (4) Parabolic scaling: for ϕ : R × R → R set S t , x ϕ ( s , y ) = 1 � s − t δ 2 , y − x � δ 3 ϕ δ Distributional exponent: F ∈ C − α in parabolic scaling if � R × R [ S t , x ϕ ]( s , y ) F ( s , y ) dsdy ≤ c ϕ δ − α W ∈ C − 3 / 2 − ε since White noise irregularity: We have ˙ 2 dsdy �� 2 � � � ˙ � � � W ( S t , x ϕ ) = � [ S t , x ϕ ]( s , y ) E � � � � � � R × R 1 � R × R | ϕ ( s , y ) | 2 dsdy = δ 3 Samy T. (Nancy) Power type coefficients Las Vegas 2015 14 / 22

  15. Back to our equation y t = | y t | κ ˙ x t , where x ∈ C γ Equation: ˙ Heuristics for critical exponent: Reduction to the definition of | y t | κ ˙ x t as a distribution 1 x t ∈ C − (1 − γ ) ˙ 2 Problem to define | y t | κ ˙ x t : when y t close to 0 3 ֒ → otherwise power function well-behaved When y t close to 0: equation becomes noiseless 4 (i) Morally y ∈ C 1 (ii) Morally | y | κ ∈ C κ instead of | y | κ ∈ C γ κ (iii) Product | y t | κ ˙ x t well-defined if κ − (1 − γ ) > 0 Conclusion: Critical κ should be κ c = 1 − γ Remark: Our story is in fact quite different! Samy T. (Nancy) Power type coefficients Las Vegas 2015 15 / 22

  16. Outline Introduction 1 Equation under consideration Examples and heuristics Results 2 Samy T. (Nancy) Power type coefficients Las Vegas 2015 16 / 22

  17. Setting Equation: for x ∈ C γ ([0 , τ ]; R d ) with γ > 1 / 2, � t d � 0 σ j ( y u ) dx j y t = a + u . (3) j =1 Further assumptions on σ : σ (0) = 0 | σ ( ξ 2 ) − σ ( ξ 1 ) | � | ξ 2 − ξ 1 | κ for κ ∈ (0 , 1) Case of interest: γ + γκ < 1 Remark: relation γ + κ > 1 does not show up! Noisy integral: Extended Young sense ֒ → See later for details Samy T. (Nancy) Power type coefficients Las Vegas 2015 17 / 22

  18. 1-dimensional case Additional set of assumptions: d = 1 and y is real-valued � ξ ds φ ( ξ ) = σ ( s ) well-defined 0 � τ ds | φ η ( x s ) | < ∞ for a certain η < 1 − κ 0 ֒ → Satisfied for x ≡ fBm with H > 1 / 2 Theorem 1. Under assumptions above, y = φ − 1 ( x ) solution to: � t y t = 0 σ ( y s ) dx s Remark: No uniqueness here ( y ≡ 0 is also a solution) Samy T. (Nancy) Power type coefficients Las Vegas 2015 18 / 22

  19. d -dimensional case: setting Additional set of assumptions: | σ j ( ξ ) | � | ξ | κ | σ j ( ξ 2 ) − σ j ( ξ 1 ) | � | ξ 2 − ξ 1 | κ in a neighborhood of 0. | D σ j ( ξ ) | � | ξ | − (1 − κ ) . A stopping time: Set t ∗ = inf { t ; y t = 0 } ∧ τ Samy T. (Nancy) Power type coefficients Las Vegas 2015 19 / 22

  20. d -dimensional case: result Theorem 2. Under assumptions of previous slide ֒ → There exists a solution y to equation (3) in following sense: (i) For t ∈ [0 , t ∗ ] we have � t d � 0 σ j ( y u ) dx j y t = a + u j =1 (ii) On [ t ∗ , τ ], we have y ≡ 0 (iii) Integral understood in extended Young sense Samy T. (Nancy) Power type coefficients Las Vegas 2015 20 / 22

  21. Extended Young integral Proposition 3. Consider: x and y in C γ with γ > 1 / 2 κ such that γ + γκ < 1 σ of the form σ ( ξ ) ≍ | ξ | κ Assume y satisfies: β ≥ 1 − ( γ + γκ ) | y | − 1 ∈ L β ([0 , τ ]) , with γ 2 Then following integral well-defined as limit of Riemann sums: � t 0 σ ( y s ) dx s Samy T. (Nancy) Power type coefficients Las Vegas 2015 21 / 22

  22. Sketch of the proof Strategy for existence result for (3): Proceed by regularization σ → σ n and y → y n y n ∈ C γ � t ∗ s | − β ds 0 | y n Main step: prove uniform bounds on n To prove these bounds: use regularity increase as | y s | close to 0 ֒ → Back to Mytnik-Perkins’ heuristics Samy T. (Nancy) Power type coefficients Las Vegas 2015 22 / 22

Recommend


More recommend