no signalling assisted zero error communication via
play

No-signalling assisted zero- error communication via quantum - PowerPoint PPT Presentation

No-signalling assisted zero- error communication via quantum channels and the Lovsz number Andreas Winter (ICREA & UAB Barcelona) Runyao Duan (UTS Sydney)xxxxxxxxx arXiv:1409.3426 If youve been partying... Hungover Summary 1. C


  1. No-signalling assisted zero- error communication via quantum channels and the Lovász ϑ number Andreas Winter (ICREA & UAB Barcelona) Runyao Duan (UTS Sydney)xxxxxxxxx arXiv:1409.3426

  2. If you’ve been partying...

  3. Hungover Summary 1. C (G) ≤ log ϑ (G) 0 2. C (G) ≤ log ϑ (G) 0E 3.-5. C (G) = log ϑ (G) 0NS

  4. Hungover Summary Zero-error capacity of the graph G Lovász number; 1. C (G) ≤ log ϑ (G) it’s a semidefinite 0 programme 2. C (G) ≤ log ϑ (G) 0E 3.-5. C (G) = log ϑ (G) 0NS

  5. Hungover Summary Zero-error capacity of the graph G Lovász number; 1. C (G) ≤ log ϑ (G) it’s a semidefinite 0 programme 2. C (G) ≤ log ϑ (G) 0E Can be < 3.-5. C (G) = log ϑ (G) Might be < 0NS Yes, it’s equality!

  6. 1. Channels & graphs Channel N : X Y, i.e. stochastic map → X x y Y N � ∈ N(y|x) : transition probabilities

  7. 1. Channels & graphs Channel N : X Y, i.e. stochastic map → X x y Y N � ∈ N(y|x) : transition probabilities Want to send information (in x), such that receiver (seeing y) can be certain about it.

  8. 1) Transition graph : bipartite graph on Γ XxY with adjacency matrix { 1 if N(y|x) > 0, Γ (y|x) = 0 if N(y|x) = 0.

  9. 1) Transition graph : bipartite graph on Γ XxY with adjacency matrix { 1 if N(y|x) > 0, Γ (y|x) = 0 if N(y|x) = 0. 2) Confusability graph G on X: adj. matrix xx’ { T 1 if N(.|x) N(.|x’) > 0, ( +A) = T 1 1 0 if N(.|x) N(.|x’) = 0.

  10. 1) Transition graph : bipartite graph on Γ XxY with adjacency matrix { 1 if N(y|x) > 0, Γ (y|x) = 0 if N(y|x) = 0. 2) Confusability graph G on X: adj. matrix xx’ { T 1 if N(.|x) N(.|x’) > 0, ( +A) = T 1 1 0 if N(.|x) N(.|x’) = 0. Lovász convention: x~x’ iff x=x’ or xx’ edge

  11. Example?

  12. Γ =T 5 typewriter channel

  13. =T G=C 5 5 Γ typewriter pentagon channel

  14. Γ =T G=K 3 3

  15. Γ =T G=K 3 3 Γ =*

  16. Product channels: NxN’(yy’|xx’) = N(y|x)N’(y’|x’) X x y Y N � ∈ X’ x’ y’ Y’ N’ � ∈

  17. Product channels: NxN’(yy’|xx’) = N(y|x)N’(y’|x’) X x y Y N � ∈ X’ x’ y’ Y’ N’ � ∈ Graphs via Kronecker/tensor product: ’ Γ (NxN’) = Γ Γ ⊗ +A(NxN’) = ( +A) ( +A’) 1 1 1 1 1 1 ⊗

  18. Product channels: NxN’(yy’|xx’) = N(y|x)N’(y’|x’) X x y Y N � ∈ X’ x’ y’ Y’ N’ � ∈ Graphs via Kronecker/tensor product: ’ Γ (NxN’) = Γ Γ ⊗ +A(NxN’) = ( +A) ( +A’) 1 1 1 1 1 1 ⊗ Strong graph product GxG’

  19. 1 1-. Zero-error transmission 2 y possible: x=f(i) i N N(y|x)>0

  20. 1 1-. Zero-error transmission 2 y possible: x=f(i) i N N(y|x)>0 Hence: codebook {f(i)} X must be an ⊂ independent set in G. Maximum size: α (G) := independence number of G.

  21. 1 1-. Zero-error transmission 2 y possible: x=f(i) i N N(y|x)>0 Hence: codebook {f(i)} X must be an ⊂ independent set in G. Maximum size: α (G) := independence number of G. Well-known to be NP-complete!

  22. 1 1-. Zero-error transmission 2 y possible: x=f(i) i N N(y|x)>0 Hence: codebook {f(i)} X must be an ⊂ independent set in G. Maximum size: α (G) := independence number of G. Well-known to be NP-complete! Upper bounds!?

  23. α (G) ≤ ϑ (G) = max Tr BJ s.t. B ≥ 0, Tr B=1, B = 0 ∀ xy ∈ G. xy [L. Lovász, IEEE-IT 25(1):1-7, 1979]

  24. α (G) ≤ ϑ (G) = max Tr BJ s.t. B ≥ 0, Tr B=1, B = 0 ∀ xy ∈ G. xy [L. Lovász, IEEE-IT 25(1):1-7, 1979] ≤ ( Γ ) = max w s.t. w ≥ 0 & α ∗ � x x x ∀ y Γ (y|x)w ≤ 1. � x x [C.E. Shannon, IRE-IT 2(3):8-19, 1956]

  25. α (G) ≤ ϑ (G) = max Tr BJ s.t. B ≥ 0, Tr B=1, B = 0 ∀ xy ∈ G. xy [L. Lovász, IEEE-IT 25(1):1-7, 1979] ≤ ( Γ ) = max w s.t. w ≥ 0 & α ∗ � x x x ∀ y Γ (y|x)w ≤ 1. � x x [C.E. Shannon, IRE-IT 2(3):8-19, 1956] Best: (G) = min ( Γ ) s.t. G ⊃ graph of Γ α ∗ α ∗

  26. α (G) ≤ ϑ (G) = max Tr BJ s.t. B ≥ 0, Tr B=1, B = 0 ∀ xy ∈ G. xy [L. Lovász, IEEE-IT 25(1):1-7, 1979] ≤ ( Γ ) = max w s.t. w ≥ 0 & α ∗ � x x x ∀ y Γ (y|x)w ≤ 1. � x x [C.E. Shannon, IRE-IT 2(3):8-19, 1956] Best: (G) = min ( Γ ) s.t. G ⊃ graph of Γ α ∗ α ∗ (Attained at Γ that has an output for every maximal clique of G: Γ (C|x)=1 iff x ∈ C.)

  27. [C.E. Shannon, IRE-IT 2(3):8-19, 1956] Asymptotically many channel uses - capacity: x y N 1 1 x y N 2 2 f(i) i j ... x y N n n 1 xn C (G) = lim - log α (G ) ≤ log ϑ (G) n 0

  28. [C.E. Shannon, IRE-IT 2(3):8-19, 1956] Asymptotically many channel uses - capacity: x y N 1 1 x y N 2 2 f(i) i j ... x y N n n 1 xn C (G) = lim - log α (G ) ≤ log ϑ (G) n 0 =sup because α (GxH) ≥ α (G) α (H)

  29. [C.E. Shannon, IRE-IT 2(3):8-19, 1956] Asymptotically many channel uses - capacity: x y N 1 1 x y N 2 2 f(i) i j ... x y N n n 1 xn C (G) = lim - log α (G ) ≤ log ϑ (G) n 0 =sup because ϑ (GxH)= ϑ (G) ϑ (H)! α (GxH) ≥ α (G) α (H) [L. Lovász, IEEE-IT 25(1):1-7, 1979]

  30. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 Also fractional packing number multiplicative: ( Γ Γ ‘) = ( Γ ) ( Γ ‘), α ∗ α ∗ α ∗ ⊗ (GxH) = (G) (H) ! α ∗ α ∗ α ∗

  31. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 All inequalities can be strict; first and last: Ex. Typewriter channel/pentagon α (C )=2, α (C xC )=5>4, 5 5 5 but ϑ (C ) = , and (T ) = 5/2. α ∗ √ 5 5 5

  32. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 All inequalities can be strict; first and last: Ex. Typewriter channel/pentagon α (C )=2, α (C xC )=5>4, 5 5 5 but ϑ (C ) = , and (T ) = 5/2. α ∗ √ 5 5 5 Note: (T ) = 3/2, but (*) = 1! α ∗ α ∗ 3

  33. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 All inequalities can be strict; first and last: Random graphs G ~ G(n, ½ ) have, whp, _ _ α (G) ≈ log n, ϑ (G) ≈ √ n, (G) ≈ n/(log n) α ∗

  34. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 All inequalities can be strict; middle due to W. Haemers [IEEE-IT 25(2);231-232, 1979], via a different algebraic and multiplicative bound on α which sometimes(!) is better than ϑ .

  35. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 All inequalities can be strict; middle due to W. Haemers [IEEE-IT 25(2);231-232, 1979], via a different algebraic and multiplicative bound on α which sometimes(!) is better than ϑ . However: w/o sacrificing multiplicativity, ϑ cannot be improved [Acín/Duan/Sainz/AW, 2014] .

  36. log α (G) ≤ C (G) ≤ log ϑ (G) ≤ log ( Γ ) α ∗ 0 All inequalities can be strict; middle due to W. Haemers [IEEE-IT 25(2);231-232, 1979], via a different algebraic and multiplicative bound on α which sometimes(!) is better than ϑ . Determination of C (G) open, not even 0 known to be computable... [N. Alon/E. Lubetzky, IEEE-IT 52(5):2172-2176, 2006]

  37. log α (G) ≤ C (G) ≤ log ϑ (G) 0 Idea: Perhaps we can close the gap by allowing additional resources in the en-/ decoding?

  38. log α (G) ≤ C (G) ≤ log ϑ (G) 0 Idea: Perhaps we can close the gap by allowing additional resources in the en-/ decoding? + feedback [C.E. Shannon, IRE-IT 2(3):8-19, 1956] C ( Γ ) = log ( Γ ), with constant α ∗ 0F activating noiseless bits.

  39. log α (G) ≤ C (G) ≤ log ϑ (G) 0 Idea: Perhaps we can close the gap by allowing additional resources in the en-/ decoding? + feedback [C.E. Shannon, IRE-IT 2(3):8-19, 1956] + entanglement (quantum correlations) + no-signalling correlations

  40. 2. Free non-local resources

  41. ψ For instance, with free entanglement: i j (=i) i y A B j x x y N Maximum #messages =: (G) � α Can show that this depends only on G; furthermore can be > α (G)... [T.S. Cubitt et al., PRL 104:230503, 2010]

  42. Known: α (G) ≤ (G) ≤ ϑ (G) � α [S. Beigi, PRA 82:010303, 2010; R. Duan/S. Severini/AW, IEEE-IT 59(2):1164-1174, 2013.]

  43. Known: α (G) ≤ (G) ≤ ϑ (G) � α Since ϑ is multiplicative under strong graph product, ϑ (GxH)= ϑ (G) ϑ (H), get: 1 xn C (G) ≤ C (G) = lim - log (G ) ≤ log ϑ (G) � n α 0 0E

  44. Known: α (G) ≤ (G) ≤ ϑ (G) � α Since ϑ is multiplicative under strong graph product, ϑ (GxH)= ϑ (G) ϑ (H), get: 1 xn C (G) ≤ C (G) = lim - log (G ) ≤ log ϑ (G) � n α 0 0E Known examples of separation [D. Leung/L. Mancinska/W. Matthews/+2, CMP 311:97-111, 2012; J. Briët/H. Buhrman/D. Gijswijt, PNAS 110:19227, 2012]

  45. Known: α (G) ≤ (G) ≤ ϑ (G) � α Since ϑ is multiplicative under strong graph product, ϑ (GxH)= ϑ (G) ϑ (H), get: 1 xn C (G) ≤ C (G) = lim - log (G ) ≤ log ϑ (G) � n α 0 0E Unknown whether = or < ! Known examples of separation [D. Leung/L. Mancinska/W. Matthews/+2, CMP 311:97-111, 2012; J. Briët/H. Buhrman/D. Gijswijt, PNAS 110:19227, 2012]

Recommend


More recommend