niobium tungsten oxides for high rate
play

Niobium tungsten oxides for high-rate lithium-ion energy storage - PowerPoint PPT Presentation

Niobium tungsten oxides for high-rate lithium-ion energy storage Kent J. Griffith 1* , Kamila M. Wiaderek 2 , Giannantonio Cibin 3 , Lauren E. Marbella 1# , Clare P. Grey 1 1 Department of Chemistry University of Cambridge, Cambridge, UK 2 X-ray


  1. Niobium tungsten oxides for high-rate lithium-ion energy storage Kent J. Griffith 1* , Kamila M. Wiaderek 2 , Giannantonio Cibin 3 , Lauren E. Marbella 1# , Clare P. Grey 1 1 Department of Chemistry University of Cambridge, Cambridge, UK 2 X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA 3 Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK * Present address: Departments of Materials Science & Engineering and Chemistry, Northwestern University, Evanston, IL, USA # Present address: Department of Chemical Engineering, Columbia University, New York, NY, USA 41 st Charles Hatchett Award Seminar, London Nature 2018 , 559 , 556 – 563.

  2. Electrochemical energy storage UK set to ban petrol and diesel vehicle sales from 2040 Β£65 million Faraday Institution for advanced batteries Grid-scale renewables are increasing and require storage/shifting Personal electronics, power tools, internet-of-things (IoT), robotics Lithium-ion battery market (cell level) πŸ”Œ 2018 β†’ $31 billion, 160 GWh πŸ”Œ 2025 β†’ $80 billion, 600 GWh πŸ”Œ 2030 β†’ $140 billion, 1200 GWh Market data: C. Pillot, Avicenne Energy Image: Ella Maru Studio

  3. Battery Applications Images: Toshiba, Chevy Bolt EV, Wall Street Journal, Stanley Black and Decker

  4. Lithium-ion batteries 30 ΞΌ m Pecher, O.; GonzΓ‘lez, J. C.; Griffith, K. J.; Grey, C. P. Materials’ Methods: NMR in Battery Research. Chem. Mater. 2017 , 29 , 213 – 242.

  5. State-of-the-art in high power anodes Lithium titanate spinel: Li 4 Ti 5 O 12 , LTO Li O Voltage vs. Li + /Li: 1.55 V β†’ safety, lower energy Ti Max. theoretical capacity (3 Li/5 Ti): 175 mAΒ·hΒ·g – 1 (less in practice) Long cycle life: >15,000 cycles Limited Li + diffusion & e – conductivity β†’ nanoscale Commercial: small anode market share but 25% CAGR 4200 tons/y (2018) β†’ 50,000 tons/y (2030) Improved high-rate anodes are desired for safe, long lasting, fast charging batteries TiNb 2 O 7 (Toshiba), crystallographic shear structure CAGR = compound annual growth rate Market data: C. Pillot, Avicenne Energy

  6. New anode materials for high power, fast charging lithium-ion batteries Niobium-based mixed metal oxides from lessons learnt on Nb 2 O 5 H-Nb 2 O 5 Wadsley – Roth crystallographic shear structure (4 Γ— 3) 1 & (5 Γ— 3) ο‚₯ Griffith, Kent. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-Rate Intercalation without Nanostructuring in Metastable Nb 2 O 5 Bronze Phases. J. Am. Chem. Soc. 2016 , 138 , 8888-8899.

  7. Nb 16 W 5 O 55 crystal structure (5 Γ— 4) 1 blocks Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. Nature , 2018 , 559 , 556 – 563.

  8. New anode materials for high power, fast charging lithium-ion batteries Nb 18 W 16 O 93 Niobium-based mixed metal oxides from lessons learnt on Nb 2 O 5 T-Nb 2 O 5 Griffith, Kent. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-Rate Intercalation without Nanostructuring in Metastable Nb 2 O 5 Bronze Phases. J. Am. Chem. Soc. 2016 , 138 , 8888-8899.

  9. Nb 18 W 16 O 93 crystal structure TTB supercell TTB (K x WO 3 ) Γ— 3 Nb 18 W 16 O 93 a tetragonal tungsten bronze (TTB) derivative β€” Nb 18 W 16 O 93 – distorted TTB superstructure Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. Nature , 2018 , 559 , 556 – 563.

  10. Micrometer-scale bulk particle morphology (for high rates??) Electrode manufacturing Standard powder mixing Standard slurry coating Material synthesis Battery performance Scalable Low surface area = low reactivity β†’ long cycle life, high safety Low manufacturing cost (Li-free synthesis)

  11. Niobium tungsten oxide electrochemistry Nb 18 W 16 O 93 Nb 16 W 5 O 55 Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. Nature , 2018 , 559 , 556 – 563.

  12. – – Niobium tungsten oxide electrochemistry e f 10 C 20 C – – – – – – dashed lines = theoretical one electron per transition metal capacity – – – –

  13. Niobium tungsten oxide electrochemistry Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. Nature , 2018 , 559 , 556 – 563.

  14. Chemical and structural insights from synchrotron X-rays Diamond Light Source, Beamline B18 Principal beamline scientist: Giannantonio Cibin

  15. Multi-edge X-ray absorption spectroscopy W L III Nb K W L II W L I XAS: Element specific, sensitive to bulk, electronic and atomic probe Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Niobium Tungsten Oxides for High-rate Lithium-ion Energy Storage. Nature , 2018 , 559 , 556 – 563.

  16. Nb 16 W 5 O 55 XAS @ Nb K , W L II , W L I edges

  17. Multi-electron Redox at Nb and W 3.0 6.0 1.0 Nb 16 W 5 O 55 ( ex situ ) Nb 16 W 5 O 55 – Nb K -edge Nb 16 W 5 O 55 Normalized pre-edge peak intensity Nb 16 W 5 O 55 ( operando ) 5.0 Nb 16 W 5 O 55 – W L I -edge Nb 18 W 16 O 93 Nb 16 W 5 O 55 (echem) 5.5 0.8 Nb 18 W 16 O 93 – Nb K -edge Niobium oxidation state 2.5 Tungsten oxidation state Nb 18 W 16 O 93 Nb 18 W 16 O 93 – W L I -edge 4.5 Potential (V) 5.0 0.6 2.0 4.0 0.4 4.5 1.5 0.2 3.5 4.0 0.0 3.0 1.0 3.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 Li per transition metal Li per transition metal Li per transition metal

  18. Operando high-rate structure evolution from synchrotron diffraction Nb 16 W 5 O 55 Advanced Photon Source, Argonne National Lab; Beamline scientist: Kamila Wiaderek Borkiewicz, O. J.; Shyam, B.; Wiaderek, K. M.; et al. J. Appl. Cryst. 2012 , 45 , 1261 – 1269.

  19. Operando high-rate structure evolution from synchrotron diffraction Nb 18 W 16 O 93

  20. Pulsed field gradient NMR Spectroscopy Niobium tungsten oxides D Li (298 K) ~ 10 – 13 m 2 Β·s – 1 ; E a ~ 0.2 – 0.3 eV

  21. Putting diffusion coefficients into context Tech- Diffusion Length (  m) Compound Structure Type D Li (m 2 Β·s -1 ) T (K) Reference nique D Li (m 2 οƒ— s βˆ’ 1 ) 1C (3600 s) 20C (180 s) 60C (60 s) Li 10 GeP 2 S 12, Li 7 GePS 8, Kuhn et al. (2013), 1 – 5 Li 10 SnP 2 S 12 Li 7 P 3 S 11 , & Thio-LISICON 298 PFG NMR (2014), Hayamizu et Γ—10 – 12 al. (2013) 1.0Γ—10 – 12 Li 11 Si 2 PS 12 150 33 19 1.0Γ—10 – 14 15 3.3 1.9  -Li 3 PS 4 5.4Γ—10 – 13 Thio-LISICON 373 PFG NMR Gobet et al. 1.0Γ—10 – 16 1.5 0.33 0.19 1.0Γ—10 – 18 0.15 0.033 0.019 Li 0.6 [Li 0.2 Sn 0.8 S 2 ] Layered (O1) 2 – 20Γ—10 – 12 298 PFG NMR Holzmann et al. 1.0Γ—10 – 20 0.015 0.0033 0.0019 2.9Γ—10 – 13 Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 NASICON 311 PFG NMR Hayamizu et al. 3.5Γ—10 – 13 Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 Garnet 353 PFG NMR Hayamizu et al. NMR 1 – 2Γ—10 – 15 Graphite (Stage I) Graphite 298 Langer et al. relaxn. Liquid electrolytes are Li 4 Ti 5 O 12 Spinel 3.2Γ—10 – 15 298 ΞΌ + -SR Sugiyama et al. 10 – 10 – 10 – 12 m 2 Β· s – 1 NMR 1Γ—10 – 20 LiMn 2 O 4 Spinel 350 Verhoevenm et al. relaxn. 5 ΞΌ m Niobium tungsten oxides D Li (298 K) ~ 10 – 13 m 2 Β·s – 1 ; E a ~ 0.2 – 0.3 eV

  22. Insights from electronic structure calculations Center of blocks β†’ localized electrons Crystallographic shear planes β†’ conduction electrons 1) KoΓ§er, Can P.; Griffith, Kent J.; Grey, Clare P.; Morris, Andrew J. Phys. Rev. B 2019 , 99 , 075151. 2) KoΓ§er, Can P.; Griffith, Kent J.; Grey, Clare P.; Morris, Andrew J. Cation Disorder and Lithium Insertion Mechanism of Wadsley – Roth Crystallographic Shear Phases from First Principles. arXiv: 1906.04192

  23. Mechanism of high-rate Li intercalation in niobium tungsten oxides Translation to full cells High energy – Ni-rich NMC 87% Q retention at 5C for 500 cycles, full SOC cycling Longest life – LiFePO 4 89% Q retention at 10C for 1000 cycles, full SOC cycling Impedance rise from cathode β†’ NWO is very stable 1) Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey C. P. Nature , 2018 , 559 , 556 – 563. 2) Kim, Yumi; Griffith, Kent J.; Lee, Jeongjae; Jacquet, Quentin; Rinkel, Bernardine L. D.; Grey, Clare P. High Rate Lithium Ion Battery with Niobium Tungsten Oxide Anode. In preparation.

  24. Acknowledgements Clare Grey Lauren Marbella Kamila Wiaderek, Giannantonio Cibin, Anatoliy Senyshyn John Griffin, Alex Forse Can Koçer, Martin Mayo, Matthew Evans, Chris Pickard, Andrew Morris

Recommend


More recommend