niobium in fire resistant structural steels
play

Niobium in Fire Resistant Structural Steels David K. Matlock and - PowerPoint PPT Presentation

Niobium in Fire Resistant Structural Steels David K. Matlock and John G. Speer Advanced Steel Processing and Products Research Center* Colorado School of Mines Golden, Colorado Steven G. Jansto CBMM Reference Metals Bridgeville, Pennsylvania


  1. Niobium in Fire Resistant Structural Steels David K. Matlock and John G. Speer Advanced Steel Processing and Products Research Center* Colorado School of Mines Golden, Colorado Steven G. Jansto CBMM Reference Metals Bridgeville, Pennsylvania Niobium in Structural Steels Armourers’ Hall, London July 6, 2012 * An NSF Industry/University Cooperative Research Center - Est. 1984 http://aspprc.mines.edu/

  2. Acknowledgements This presentation based primarily on the following theses: Matthew S. Walp, “ Fire-Resistant Steels For Construction Applications,” MS Thesis, Colorado School of Mines, 2003. Justin C. Cross, “Effects of Microstructure On The Fire- Resistant Properties Of HSLA Structural Steels,” MS Thesis, Colorado School of Mines, 2006. Ryan W. Regier, “Thermomechanical Processing Effects on the Elevated Temperature Behavior of Niobium Containing Fire-Resistant Steel,” MS Thesis, Colorado School of Mines, 2008.

  3. Fire Resistance in Structures Coatings Design Tokoname Gymnasium Design of Steel Frames to Eliminate Fire Protection , Nippon Steel Corp., 1993. Sprinkler Systems Fire Resistant Structural Materials Cost Effective Fire Resistant (FR) Steels www.armorfirepro.com

  4. Background: Fire Resistant (FR) Steels • Significant Japanese Developments…. • Requirement: Guarantee 2/3 of room temperature yield strength at 600°C • Enhanced performance due to R. Wildt (2005) microstructural stability; alloy with R. Wildt, Fire Resistant Steel – A New Approach to Fire Safety, Proceedings of the Mo, Nb, Cr, ….. 7th World Congress, CTBUH, Council on Tall Buildings and Urban Habitat: Renewing the Urban Landscape, New York, 2005. ISBN: 978-0-939493-22-7. • Applications require specifications and building code acceptance

  5. Recent Research at ASPPRC • Microstructure/alloying parameters of interest • Starting microstructure • Hot rolled: ferrite-pearlite • Control cooled: bainitic, martensitic • Thermomechanically processed • Microalloy precipitation • Prior to fire exposure • During exposure • Evaluate testing methods for FR steels • High temperature tensile • Constant load test – developed at ASPPRC

  6. Experimental Methods Tensile Testing = f(T) Constant Load (conventional approach) “Accelerated Creep” (newly developed test) • Impose constant strain rate • Impose constant load • Vary heating rate to test T • Heat at constant rate = 100 to 1200 o C/hr Displacement or Strain Displacement or Strain σ σ T 1 T 1 T 2 T 2 Fail Fail T 3 T 3 Elastic Elastic Limit Limit Increase Temperature Increase Temperature ε ε Temperature or Time Temperature or Time

  7. Alloy Matrix Alloying elements & Steel Alloys Composition (wt%) Base 0.1C - 1.0Mn - 0.2Si - 0.01N Nb Base + 0.02Nb Mo + Nb Base + 0.5Mo - 0.02Nb V + Nb Base + 0.05V - 0.02Nb 1.0Cu - 0.75Ni - 0.51Cr - 0.5 Mo - Cu 0.06V - 0.02Nb

  8. Tensile Data - Examples Base alloy V + Nb alloy 100 100 V+Nb Alloy Base Alloy 25°C 25°C 600 600 400°C 100°C 100°C 200°C 80 80 200°C 300°C 400°C 300°C 25°C 300°C 300°C 400°C 400°C 25°C 500°C 200°C 500°C Eng. Stress (MPa) Eng. Stress (MPa) 600°C Eng. Stress (ksi) Eng. Stress (ksi) 500°C 60 60 600°C 700°C 400 400 500°C 200°C 700°C 100°C 100°C 600°C 600°C 40 40 200 200 700°C 700°C 20 20 0 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 Plastic Eng. Strain Plastic Eng. Strain Strain Rate = 3.9x10 -3 s -1 Heating Rate = 600 o C/hr 15 minute hold @ T M. Walp, MS Thesis, 2003

  9. Temperature Dependent Tensile Data Temperature (°F) 0 400 800 1200 100 Mo+Nb 600 Nb 80 V+Nb Base Eng. Stress (MPa) Eng. Stress (ksi) Mo+Nb 60 400 V+Nb Nb Base 40 200 Strain Rate = 3.9x10 -3 s -1 20 Heating Rate = 600 o C/hr 15 minute hold @ T 0 0 0 200 400 600 Temperature (°C) M. Walp, MS Thesis, 2003

  10. Heating Rate Effects – Tensile Data Vary heating rate 100 to 1200 o C/hour Heating Rate (°F/Hr) 0 500 1000 1500 2000 80 Mo + Nb Alloy 300°C 400°C 60 400 100°C Yield Stress (MPa) 200°C Eng. Stress (MPa) Yield Stress (ksi) Eng. Stress (ksi) 500°C 600°C 40 200 20 3.9x10 -3 s -1 15 minute hold 0 0 0 400 800 1200 Heating Rate (°C/Hr) M. Walp, MS Thesis, 2003

  11. Constant Load – Accelerated Creep Temperature (°F) 1000 1100 1200 1300 1400 0.3 50% YS @ 1200°C/Hr Base 0.3 Nb Nb Mo+Nb Mo+Nb V+Nb V+Nb 0.2 Base Plastic Displacement (in) 0.2 Plastic Eng Strain 0.1 0.1 0 0 -0.1 -0.1 550 600 650 700 750 Temperature (°C) M. Walp, MS Thesis, 2003

  12. Microstructure after Accelerated Creep Nb alloy Mo + Nb alloy 100 nm • TEM Replicas • Tested at 50% of room temp. yield stress of Nb alloy • Heating rate = 300°C/hr J. Cross, MS Thesis, 2006

  13. Precipitation during Heating Temperature (°F) 1000 1100 1200 1300 • 1 % Cu Steel – three 0.3 heat treat conditions: 50% YS @ 600°C/Hr 1% Cu steel Cu N 0.3 Cu P • Normalized (N) Cu O • Maximum precipitation 0.2 potential during test Plastic Displacement (in) 0.2 Cu P Plastic Eng Strain Cu O • Peak Aged (P) Cu N • Distribution of fine ppts 0.1 0.1 • Overaged (O) • Coarse ppts • minimum precipitation 0 0 Normalized potential -0.1 -0.1 500 550 600 650 700 750 Temperature (°C) M. Walp, MS Thesis, 2008

  14. Importance of Base Microstructure • C-Mn Alloy: Three heat treat Temperature (°F) 1100 1200 1300 conditions 0.15 300°C/hr • Ferrite-Pearlite (F/P) 50% Nb RT YS 0.125 • Limited substructure in ferrite F/P • Bainite (B) 0.1 Plastic Strain Martensite • Martensite (M) 0.075 Bainite 0.05 • Result: • Substructure contributes to 0.025 FR properties • Improvement less than by 0 560 600 640 680 720 using Nb-alloy Temperature (°C) J. Cross, MS Thesis, 2006 Speer, et al., HSLA- 2005.

  15. Evaluate Substructure Control by TMP • Nb Alloy • Laboratory Rolled • Vary Finishing Temperature, 650 to 900 o C 60 min @ 1100C 25% @ 1000C Temperature ( o C) 10% @ 900C ) A 3 800C 750C 700C A 1 650C Air Cool Time (min) R. Regier, MS Thesis, 2003

  16. TMP: Microstructures – Nb Alloy Electron Back Scattered Diffraction Images (Combined IQ, IPF, and Misorientation Plots) 900°C 650°C 50 µm 50 µm RD R. Regier, MS Thesis, 2003

  17. TMP: Tensile Properties – Nb Alloy Effect of Finishing Temperature: 650 to 900 o C Test T = 25°C 600°C Finish Rolling Temperature (°F) Finish Rolling Temperature (°F) 1200 1350 1500 1650 1200 1350 1500 1650 600 85 45 A 1 A 3 UTS UTS 300 550 UTS UTS A 1 75 A 3 Stress (MPa) Stress (MPa) 40 Stress (ksi) Stress (ksi) 500 α α+ γ γ � ��� � � � ��� 250 α α+ γ γ 65 450 35 YS YS YS YS 400 55 30 200 350 600 700 800 900 600 700 800 900 Finish Rolling Temperature (°C) Finish Rolling Temperature (°C) Heating rate = 600 o C/hr R. Regier, MS Thesis, 2003

  18. TMP: Constant Load – Nb Alloy Effect of Finishing Temperature: 650 to 900 o C Temperature ( o F) 1000 1100 1200 0.3 50% Nb RT YS @ 600 o C/Hr o C 900 0.2 o C 750 Plastic Eng Strain o C 800 0.1 o C 700 1% offset strain 0 o C 650 Identical Applied loads -0.1 500 550 600 650 700 Temperature ( o C) R. Regier, MS Thesis, 2003

  19. TMP: Constant Load – Nb Alloy Enhanced properties with sub-critical finishing temperature Finish Rolling YS Ratio Temp. ( ° C) (%) 650 ° C 63.1 700 ° C 57.1 750 ° C 53.1 800 ° C 57.6 900 ° C 59.1 R. Regier, MS Thesis, 2003

  20. Closing Comments: Fire Resistant Steels • Mo + Nb steels = improved FR properties with suitable manufacturabilty • Substructural refinement leads to improved FR properties • Bainite • Warm worked ferrite • Precipitation during heating may provide “active” fire protection • Precipitate stability in Mo + Nb alloys is under consideration in ongoing ASPPRC research

  21. Current Status: United States • New ASTM Standard Approved - 2012 • A1077/A1077M-12 Standard Specification for Structural Steel with Improved Yield Strength at High Temperature for Use in Buildings • Codes need to recognize FR steels in design guidelines.

Recommend


More recommend