new physics models facing lepton flavor violating higgs
play

New Physics Models Facing Lepton Flavor Violating Higgs Decays Nejc - PowerPoint PPT Presentation

New Physics Models Facing Lepton Flavor Violating Higgs Decays Nejc Ko nik with Ilja Dor ner, Svjetlana Fajfer, Admir Greljo, Jernej F. Kamenik, I. Ni and i Based


  1. ���������� �� ��������� New Physics Models Facing Lepton Flavor Violating Higgs Decays Nejc Ko š nik with Ilja Dor š ner, Svjetlana Fajfer, Admir Greljo, Jernej F. Kamenik, I. Ni š and ž i ć Based on arXiv:1502.07784 ������� �� ����������� ��� �������

  2. Introduction • Hint of huge Lepton Flavor Violation in Higgs decay (null hypothesis 2.4 σ 0 . 84 +0 . 39 � � B ( h → τ µ ) = % [CMS,1502.07400] excluded) − 0 . 37 • Clearly beyond the SM (or SM with Dirac neutrinos) • What kind of NP model could accommodate this result and be consistent with numerous (negative) tests of LFV? branching fraction LFV process < 10 -7 τ → 3 µ τ → µ γ < 10 -13 µN → eN µ → e γ < 10 -5 Z → ` i ` j ≈ 10 -2 h → τ µ 2 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  3. N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  4. Outline Motivation: • Find complementary LFV observables • Identify viable scenarios 1. Constraints on effective Higgs couplings 2. Effective theory approach 3. Extended scalar sector 4. Extended fermionic sector or loop-induced LFV 5. Summary and outlook 4 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  5. 1. Constraints on effective Higgs couplings from h →τμ N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  6. Effective Higgs couplings • General parameterisation of the off-diagonal Yukawa couplings ⇣ ⌘ m i Y ` = − m i � ij ¯ L ` j ¯ L ` j y SM L e ff . ` i ` i = δ ij R − y ij h + . . . + h . c . ij R v m h τ | y τ µ | 2 + | y µ τ | 2 � � B ( h → τ µ ) = h 8 π Γ h y µ τ µ • Assuming New Physics only in h →μτ then CMS result gives 2.0 1.5 ℬ ( � →τμ ) [%] 0 . 84 +0 . 39 � � B ( h → τ µ ) = % − 0 . 37 1.0 CMS 1 σ 0.5 0.0 0.000 0.001 0.002 0.003 0.004 ( � � τμ � � + � � μτ � � ) � / � q | y τ µ | 2 + | y µ τ | 2 < 0 . 0032(0 . 0036) at 68% (95%) C . L . 0 . 0019(0 . 0008) < 6 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  7. Effective Higgs couplings • Testing robustness of the lower bound of LFV Yukawas: allowing for non- SM Higgs production rate and total decay width Γ h → τ µ N h → τ µ ∼ σ h Γ h 7 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  8. Effective Higgs couplings • Testing robustness of the lower bound of LFV Yukawas: allowing for non- SM Higgs production rate and total decay width 7 Γ h → τ µ Higgs data fit N h → τ µ ∼ σ h 6 Γ h 5 4 • Well known Higgs production χ 2 3 • Strong lower bound on Γ h ��� ( ����� ) � ���� � τμ ��������� ���� ( ������ ) � ��� ��������� 2 1 0 0.000 0.002 0.004 0.006 0.008 ( � � τμ � � + � � μτ � � ) � / � q | y τ µ | 2 + | y µ τ | 2 < 0 . 0036(0 . 0047) at 68% (95%) C . L . 0 . 0017(0 . 0007) < Robust lower bound on the LFV Yukawas 8 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  9. 2. Effective theory approach N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  10. Effective Theory Framework • Integrate out heavy Higgses, fermions, scalars. Keep terms up to dim-6: 1 ij ¯ Λ 2 ¯ L i H α E j − λ 0 αβγ L i H α E j ( H † L Y ` = − λ α β H γ ) + h . c . ij Multiple higgses α , v α + x α h + . . . ) T H α = ( h + X X | x α | 2 ∼ 1 / 2 v 2 α ∼ v 2 / 2 α α Dim-6 operator creates mismatch between mass and Yukawa matrices v α + λ 0 αβγ v 2 ✓ ◆ m y ij = m i V † λ α ¯ v � ij + ✏ ij v = V L v α ¯ v β ¯ v γ Λ 2 ¯ R + � 0 αβγ v 2  ✓ x α ◆ ✓ x α ◆� + x β + x γ V † � α ¯ ✏ = V L v α − 1 Λ 2 ¯ v α ¯ v β ¯ v γ − 1 R v α ¯ v α ¯ v β ¯ v γ ¯ vanishing in single ⌘� 1 / 4 ✓ 0 . 84% ◆ ⇣ | V L λ 0 111 V † τ µ + | V L λ 0 111 V † R | 2 R | 2 Λ ' 4 TeV Higgs scenarios µ τ B ( h ! τ µ ) 10 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  11. Naturalness • Naturalness criterium for effective Higgs couplings (to avoid cancellations in the mass matrix) [Cheng,Sher, Phys.Rev. D35, 3484] √ m µ m τ q | y τ µ y µ τ | . = 0 . 0018 [Branco et al,, Phys.Rept. 516, 1] v 0.005 » y tm y mt » > m t m m ê v 2 0.004 0.003 » y mt » CMS h Ætm 0.002 68 % C.L. 0.001 95 % C.L. 0.000 0.000 0.001 0.002 0.003 0.004 0.005 » y tm » 11 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  12. Tau LFV radiative decay • Constraint from τ→μγ [Harnik, Kopp, Zupan, JHEP 1303, 026] [Goudelis, Lebedev, Park, Phys.Lett. B707, 369 ] [ Blankenburg, Ellis, Isidori, Phys.Lett. B712, 386] y τ µ τ µ τ Comparable 1-loop and Barr-Zee contributions y τ µ τ µ τ t 12 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  13. Additional LFV correlations Suppose that h τ e is nonzero. } µ → e γ µN → eN µ τ e h → τ µ h → τ e | y µ τ y τ e | 2 + | y τ µ y e τ | 2 � � B ( µ ! e γ ) ' 185 | y e τ y µ τ | 2 + | y τ e y τ µ | 2 � B ( µ ! e ) Au ' 4 . 67 ⇥ 10 − 4 �  B ( µ → e γ ) �  B ( µ → e ) Au � B ( h → τ µ ) × B ( h → τ e ) = 7 . 95 × 10 − 10 + 3 . 15 × 10 − 4 10 − 13 10 − 13 13 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  14. h →μτ Vs. h → e τ τ→ e γ [ BaBar. PRL104, 021802 (2010)] < 3.3 × 10 -8 0.19 SINDRUM II, μ e conv. on Au < 7 × 10 -13 [ Eur.Phys.J. C47, 337 (2006)] projected Mu2e limit on μ e < 6 × 10 -17 14 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  15. 3. Two Higgs doublet mode (type III) N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  16. Framework ✓ H 0 ◆ ✓ H + ◆ d u [Crivellin et al, PRD,87,094031 (2013)] H d = , H u = H 0 H − u d 1 H 0 sin α + h 0 cos α + iA 0 cos β H 0 � � u = √ 2 1 H 0 cos α − h 0 sin α + iA 0 sin β H 0 � � d = √ 2 u = H + cos β 5 physical scalars: H 1 h, H 0 , H ± , A u = H − sin β H 2 tan 2 α = tan 2 β m 2 A + m 2 tan β = v u Z , , m 2 A − m 2 2 parameters: tan β , m A v d Z m 2 H ± = m 2 A + m 2 m 2 H = m 2 A + m 2 Z − m 2 W h 16 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  17. Flavor couplings • Type-III THDM : no restrictions on the Higgs couplings to fermions • Tree-level Higgs couplings exhibit ➡ Charged and FCN currents in the quark sector (K, D, B meson mixing, rare decays) ➡ Lepton Flavor Violation • Decoupling limit of MSSM y H + y H k fi fi 2 H k ¯ 2 H + ¯ L = ` L,f ` R,i + ⌫ L,f ` R,i + h.c. √ √ m ` i y H k fi = x k � fi − ✏ ` x k d tan � − x k ∗ � � Neutral Higges couplings d fi u v d 3 ✓ m ` i ◆ √ y H ± X sin � V PMNS � ji − ✏ ` Charged Higgs couplings ji tan � = 2 fi fj v d j =1 • LFV parameters are ε lij 17 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  18. h →τμ τ ✏ ` h µ ⌧ ( ⌧ µ ) y µ τ y µ ⌧ ( ⌧ µ ) = (sin ↵ tan � + cos ↵ ) √ 2 µ m h µ ⌧ | 2 + | ✏ ` | ✏ ` (sin ↵ tan � + cos ↵ ) 2 � ⌧ µ | 2 � B ( h → ⌧ µ ) = 16 ⇡ Γ h 0.10 ℬ ( � →τμ )= ���� % 0.08 sin α tan β + cos α ' � 2 m 2 ��� β = �� Z ��� β = � ℓ � � ) � / � m 2 A 0.06 ℓ � � + �ϵ μτ 0.04 Effect decouples for large m A ( �ϵ τμ 0.02 � τ / � 0.00 200 300 400 500 600 700 m A . ( GeV ) 18 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  19. Tau LFV decays H 0 H 0 A 1-loop ~ (LFV Yukawa) * (tiny LFC Yukawa) H + H + k k µ µ τ ν τ τ y ττ y τ µ Dominant Barr-Zee contributions A Barr-Zee ~ (LFV Yukawa) * (loop suppression) [Chang et al, PRD48, 217(1993)] *Missing contributions at 2-loops with H + mediator 19 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  20. LFV correlations m 1 2 o 0 m 0 d 2 . + e o 0 . e 2 d − r 0 e f e [CMS ’14, ATLAS ‘15] . 1 r τ f = τ , τ τ μ τ μ , τ μ , μ ε τ µ ε τ Works up to m A ~ 0.5 TeV 20 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  21. Two Higgs Doublet Model } Correlation with h →τ e decay! µ → e γ µN → eN µ τ e h → τ µ h → τ e | ✏ µ τ ✏ τ e | 2 + | ✏ e τ y τ µ | 2 � B ( µ ! e � ) ' B µ → e γ � ( t β , m A ) , 0 | ✏ e τ ✏ µ τ | 2 + | ✏ τ e ✏ τ µ | 2 � B ( µ ! e ) A u ' B µe � 0 ( t β , m A ) B ( µ → e γ ) ( t β , m A ) + B ( µ → e ) Au B ( h → τ µ ) × B ( h → τ e ) ∼ B µ → e γ B µe 0 ( t β , m A ) 0 21 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  22. h →μτ Vs. h → e τ B ( h → τ e ) < 6 × 10 − 6 (taking central value for h →τμ ) SINDRUM II, μ e conv. on Au < 7 × 10 -13 [ Eur.Phys.J. C47, 337 (2006)] and MEG μ→ e γ <5.7 × 10 -13 [PRL110, 201801 (2013)] 22 N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

  23. 4. Extended fermionic sector or loop-induced LFV N. Ko š nik (UL, JSI) Charm ’15, WSU, Detroit, 5/19

Recommend


More recommend