On the Origin of Neutrino Mass and Lepton Number Violating Searches Manimala Mitra IPPP, Durham University —————————————— December 23, 2013 IOP, Bhubaneswar Manimala Mitra Neutrinos and Lepton Number Violating Searches
Outline: ◮ Experimental observations ◮ Seesaw and massive neutrinos ◮ Lepton number violating searches ◮ Neutrinoless double beta decay ◮ Underlying mechanisms ◮ canonical and beyond standard model interpretations ◮ Complementarity with collider searches ◮ Seesaw and astroparticle probe ◮ Summary Manimala Mitra Neutrinos and Lepton Number Violating Searches
Experimental Observation: Non-zero eV neutrino masses m i and mixing U from oscillation and non-oscillation experiments 21 = (7 . 0 − 8 . 09) × 10 − 5 eV 2 ∆ m 2 ∆ m 2 31 = (2 . 27 − 2 . 69) × 10 − 3 eV 2 ◮ Cosmological bound sin 2 θ 12 = 0 . 27 − 0 . 34 on the sum of light neutrino masses sin 2 θ 23 = 0 . 34 − 0 . 67 sin 2 θ 13 = 0 . 016 − 0 . 030 � i m i < 0 . 23 − 1 . 08 eV Schwetz et al., 2012 Also Fogli., et al., 2012 Planck collaboration, 2013 Super Kamiokande, Long Baseline ∼ T2K, MINOS, K2K Reactor ∼ DAYA BAY, RENO, Double CHOOZ,... Solar ∼ SNO, Borexino, SAGE, GALLEX... ——————————————————————– Manimala Mitra Neutrinos and Lepton Number Violating Searches
List of Don’t Knows Neutrino Mass ⇓ Dirac or Majorana? ◮ Dirac mass, m D ¯ ν L N R → lepton number is conserved ◮ Majorana mass, mν T C − 1 ν → lepton number is violated by two units ————————————– Lepton number is a Global U (1) symmetry of the standard model Manimala Mitra Neutrinos and Lepton Number Violating Searches
Contd Normal or Inverted? 12 ∼ 10 − 5 eV 2 and ∆ m 2 ∆ m 2 13 ∼ 10 − 3 eV 2 Lightest neutrino state ν 1 or ν 3 ?? Oscillation Experiments Manimala Mitra Neutrinos and Lepton Number Violating Searches
Contd α , β ? ◮ Majorana phases → Neutrinoless double beta decay phase δ ? ◮ CP violation in leptonic sector → Oscillation experiments? m 0 ? ◮ Lightest mass scale → Low energy observable, like beta decay, neutrinoless double beta decay with cosmology θ 23 , θ 12 and θ 13 ? ◮ Precision in the mixing angles → Oscillation experiments Manimala Mitra Neutrinos and Lepton Number Violating Searches
Behind neutrino mass: Neutrinos ∼ eV mass?? Top to neutrino mass ratio 10 12 Seesaw Gell-mann, Raymond, Slansky, Minkowski ◮ Heavy modes integrated out ⇒ ˆ O = LLφφ M ⇒ Weinberg d=5 operator y 2 LL � φ �� φ � ⇒ m ν ⇒ Neutrino Mass ◮ M ◮ For M = 10 15 GeV, neutrino mass of eV is generated with y ∼ O (1) Manimala Mitra Neutrinos and Lepton Number Violating Searches
Contd Tree Level Mass Generation Type-II ← Seesaw → Type-I or Type-III ◮ ◮ Intermediate state bosonic/fermionic ◮ Type-I seesaw: Intermediate state fermionic gauge singlet ◮ Type-III seesaw: SU (2) triplet fermion with Y = 0 ◮ Type-II seesaw: SU (2) triplet scalar with Y = − 2 Manimala Mitra Neutrinos and Lepton Number Violating Searches
Contd: Type-I Type-II φ φ Type-III φ φ φ φ µ ∆ N R Y † Y N Σ R N Y † Y Σ ∆ Σ Y ∆ ℓ ℓ ℓ ℓ ℓ ℓ φ φ ⇓ ℓ ℓ Manimala Mitra Neutrinos and Lepton Number Violating Searches
Type-I/III Seesaw Add gauge singlet fermionic field N R or SU (2) triplet fermion Σ Lagrangian: −L ν = Y ν L ˜ HN R + 1 2 N c R MN R + h . c Lagrangian: � � � Σ R i Σ C ′ � Y lij l R i H † L j + Y Σ ij ˜ 1 H † Σ R i L j + h.c. −L Y = + 2 M Σ ij Tr R j + h.c. √ � Σ 0 / � Σ + 2 √ SU (2) triplet, Y = 0 fermion field, Σ = Σ − − Σ 0 / 2 M , M Σ ◮ Lepton Number Violation → ◮ m ν ∼ m T D M − 1 m D where m D = Y ν v ◮ For M ∼ 10 15 GeV, m ν ≃ 1 eV is generated without any fine tuning of yukawa. For M ∼ 1 TeV , we need Y ν ∼ 10 − 6 ◮ Fits within SO (10) , SU (5) Grand Unified Theory Manimala Mitra Neutrinos and Lepton Number Violating Searches
Type-II Seesaw � δ + / √ � δ ++ 2 √ ◮ Higgs triplet, ∆ (3,2), ∆ = δ 0 − δ + / 2 ◮ Lagrangian, Lagrangian: L C iτ 2 ∆ l L + µ ∆ φ T iτ 2 ∆ † φ + M ∆ Tr (∆ † ∆) + h . c + ... −L Y = y ∆ l T Lα � φ ∗ )( � C αβ ( l c φ † l Lβ ) ◮ Integrating out heavy Higgs triplet → µ ∆ ◮ C ∝ y ∆ M 2 ∆ ◮ M ν ∝ y ∆ v 2 µ ∆ M 2 ∆ ◮ Light neutrino mass is proportional to µ Manimala Mitra Neutrinos and Lepton Number Violating Searches
Inverse Seesaw Add singlet fermionic fields N, S . . Small lepton number violating scale µ m T 0 0 D M T M ν = m D 0 0 M µ Mohapatra, PRL, 86 D M T − 1 µM − 1 m D m ν ∼ m T ◮ For µ ≪ m D < M → µ → Lepton number violation. µ → 0 = ⇒ M ν → 0 and enhanced lepton number symmetry. Inverse seesaw ———————————————————————— Loop generated mass? Radiative inverse seesaw ( Dev, Pilaftsis, 2012 ) Supersymmetry (R-parity violation) and neutrino mass Manimala Mitra Neutrinos and Lepton Number Violating Searches
Phenomenologies Astroparticle Physics → leptogenesis, dark matter, ... Collider Phenomenologies → lepton number and flavor violation Low Energy Experiments → lepton number and flavor violation Lepton Number Violating Searches Manimala Mitra Neutrinos and Lepton Number Violating Searches
Neutrinoless double beta decay The process is ( A, Z ) → ( A, Z + 2) + 2 e − Probing lepton number violation Manimala Mitra Neutrinos and Lepton Number Violating Searches
Why important? u L d L W e − L ν W W d d e − u u L W u L ν e d L ν e e − e − Schechter-Valle, PRD, 82 Information about the effective mass m ν ee Majorana Nature of Light Neutrinos ————————— L and B numbers are accidental symmetries of the standard model Manimala Mitra Neutrinos and Lepton Number Violating Searches
contd ◮ Chiral anomalies ∂ µ j µ B,L � = 0 ◮ The low energy effective Lagrangian O 5 O 6 L eff = L SM + ξ 1 M + ξ 2 M 2 + ... ◮ O 5 → LNV, O 6 → LFV, BNV ◮ Lepton and Baryon number violation might originate from high scale theory Not only mass measurement! 0 ν 2 β is a probe of lepton number violation Manimala Mitra Neutrinos and Lepton Number Violating Searches
Experimental Results Experimental Results for 76 Ge ◮ Heidelberg-Moscow, T 0 ν 1 / 2 > 1 . 9 × 10 25 yr , 90% C.L H. V. Klapdor-Kleingrothaus et al. , 2001 ◮ GERDA, T 0 ν 1 / 2 > 2 . 1 × 10 25 yr , 90% C.L ◮ GERDA combined (IGEX+Heidelberg-Moscow) T 0 ν 1 / 2 > 3 . 0 × 10 25 yr , 90% C.L GERDA collaboration, 2013 ———————————— Experimental Results for 136 Xe ◮ EXO-200, T 0 ν 1 / 2 > 1 . 6 × 10 25 yr at 90% C.L EXO collaboration, 2012 ◮ KamLAND-Zen, T 0 ν 1 / 2 > 1 . 9 × 10 25 yr at 90% C.L ◮ KamLAND-Zen combined, T 0 ν 1 / 2 > 3 . 4 × 10 25 yr at 90% C.L KamLAND-Zen collaboration, 2012 Manimala Mitra Neutrinos and Lepton Number Violating Searches
Contd Positive Claim − 0 . 23 × 10 25 yr, 68 % CL. 1 / 2 = 1 . 19 +037 ◮ The half-life for 76 Ge , T 0 ν H. V. Klapdor-Kleingrothaus et al. , 2004 − 0 . 31 × 10 25 yr, 68 % CL. 1 / 2 = 2 . 23 +0 . 44 ◮ The half-life for 76 Ge , T 0 ν H. V. Klapdor-Kleingrothaus et al. , 2006 slide courtesy: W. Rodejohann Manimala Mitra Neutrinos and Lepton Number Violating Searches
Future Experiments Slide courtesy: W. Rodejohann 1 / 2 ∼ 10 26 / 10 27 yrs Future experiments → expected sensitivity T 0 ν Manimala Mitra Neutrinos and Lepton Number Violating Searches
Contd 1 / 2 = G 0 ν |M ( A, Z ) η | 2 1 T 0 ν ◮ G 0 ν → Phase space factor ◮ M ( A, Z ) → Nuclear matrix element ◮ η → Particle physics parameter 1 / 2 ∝ η 2 → Quadratic in particle physics parameter 1 T 0 ν Improvement of η by O (0 . 1) requires improvement of half life T 0 ν 1 / 2 by O (10 2 ) Manimala Mitra Neutrinos and Lepton Number Violating Searches
The light neutrino contribution 1 / 2 = G 0 ν |M ν | 2 � � 2 � � � m ν 1 The half-life → ee � T 0 ν m e 1 ◮ G 0 ν → phase-space Positive claim 90 � GERDA 90 � GERDA � HDM � IGEX 90 � 0.1 IH QD ◮ M ν → nuclear matrix Ν � � eV � element 0.01 NH � m ee ◮ m ν ee = Σ m i U 2 Planck1 KATRIN Planck2 ei 0.001 effective mass of 0 ν 2 β 10 � 4 10 � 5 10 � 4 0.001 0.01 0.1 1 m lightest � eV � e 2 e 2 iα + m 3 U 2 | m ν ee | = | m 1 U 2 e 1 + m 2 U 2 e 3 e 2 iβ | ◮ α , β → Majorana phase, m i → light neutrino masses ◮ Unknown → neutrino mass spectra, absolute mass scale, CP phases Manimala Mitra Neutrinos and Lepton Number Violating Searches
Recommend
More recommend